431,792 research outputs found
Fluctuating magnetic moments in liquid metals
We re-analyze literature data on neutron scattering by liquid metals to show
that non-magnetic liquid metals possess a magnetic moment that fluctuates on a
picosecond time scale. This time scale follows the motion of the cage-diffusion
process in which an ion rattles around in the cage formed by its neighbors. We
find that these fluctuating magnetic moments are present in liquid Hg, Al, Ga
and Pb, and possibly also in the alkali metals.Comment: 17 pages, 5 figures, submitted to PR
Surface Crystallization in a Liquid AuSi Alloy
X-ray measurements reveal a crystalline monolayer at the surface of the
eutectic liquid Au_{82}Si_{18}, at temperatures above the alloy's melting
point. Surface-induced atomic layering, the hallmark of liquid metals, is also
found below the crystalline monolayer. The layering depth, however, is
threefold greater than that of all liquid metals studied to date. The
crystallinity of the surface monolayer is notable, considering that AuSi does
not form stable bulk crystalline phases at any concentration and temperature
and that no crystalline surface phase has been detected thus far in any pure
liquid metal or nondilute alloy. These results are discussed in relation to
recently suggested models of amorphous alloys.Comment: 12 pages, 3 figures, published in Science (2006
High temperature cobalt-base alloy Patent
High temperature cobalt-base alloy resistant to corrosion by liquid metals and to sublimation in vacuum environmen
From Kondo Effect to Fermi Liquid
The Kondo effect has been playing an important role in strongly correlated
electon systems. The important point is that the magnetic impurity in metals is
a typical example of the Fermi liquid. In the system the local spin is
conserved in the ground state and continuity with respect to Coulomb repulsion
is satisfied. This nature is satisfied also in the periodic systems as far
as the systems remain as the Fermi liquid. This property of the Fermi liquid is
essential to understand the cuprate high-Tc superconductors (HTSC). On the
basis of the Fermi liquid theory we develop the transport theory such as the
resistivity and the Hall coefficient in strongly correlated electron systems,
such as HTSC, organic metals and heavy Fermion systems. The significant role of
the vertex corrections for total charge- and heat-currents on the transport
phenomena is explained. By taking the effect of the current vertex corrections
into account, various typical non-Fermi-liquid-like transport phenomena in
systems with strong magnetic and/or superconducting flucutations are explained
within the Fermi liquid theory.Comment: 14 pages, an article for the special edition of JPSJ "Kondo Effect --
40 Years after the Discovery
Generic mechanism for generating a liquid-liquid phase transition
Recent experimental results indicate that phosphorus, a single-component
system, can have two liquid phases: a high-density liquid (HDL) and a
low-density liquid (LDL) phase. A first-order transition between two liquids of
different densities is consistent with experimental data for a variety of
materials, including single-component systems such as water, silica and carbon.
Molecular dynamics simulations of very specific models for supercooled water,
liquid carbon and supercooled silica, predict a LDL-HDL critical point, but a
coherent and general interpretation of the LDL-HDL transition is lacking. Here
we show that the presence of a LDL and a HDL can be directly related to an
interaction potential with an attractive part and two characteristic
short-range repulsive distances. This kind of interaction is common to other
single-component materials in the liquid state (in particular liquid metals),
and such potentials are often used to decribe systems that exhibit a density
anomaly. However, our results show that the LDL and HDL phases can occur in
systems with no density anomaly. Our results therefore present an experimental
challenge to uncover a liquid-liquid transition in systems like liquid metals,
regardless of the presence of the density anomaly.Comment: 5 pages, 3 ps Fig
INEL Spray-forming Research
Spray forming is a near-net-shape fabrication technology in which a spray of finely atomized liquid droplets is deposited onto a suitably shaped substrate or mold to produce a coherent solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g., refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. Researchers at the Idaho National Engineering Laboratory (INEL) are developing spray-forming technology for producing near-net-shape solids and coatings of a variety of metals, polymers, and composite materials. Results from several spray forming programs are presented to illustrate the range of capabilities of the technique as well as the accompanying technical and economic benefits. Low-carbon steel strip greater than 0.75 mm thick and polymer membranes for gas/gas and liquid/liquid separations that were spray formed are discussed; recent advances in spray forming molds, dies, and other tooling using low-melting-point metals are described
Transition of amorphous to crystalline oxide film in initial oxide overgrowth on liquid metals
It is important to understand the mechanism of oxidation in the initial stage on the free surface of liquid metals. Mittemeijer and co-workers recently developed a thermodynamic model to study the oxide overgrowth on a solid metal surface. Based on this model, we have developed a thermodynamic model to analyse the thermodynamic stability of oxide overgrowth on liquid metals. The thermodynamic model calculation revealed that the amorphous oxide phase is thermodynamically preferred up to 1.3 and 0.35 nm respectively, in the initial oxide overgrowth on liquid Al and Ga at the corresponding melting point. However, the amorphous phase is thermodynamically unstable in the initial oxide overgrowth on liquid Mg. The thermodynamic stability of amorphous phase in the Al and Ga oxide systems is attributed to lower sums of surface and interfacial energies for amorphous phases, compared to that of the corresponding crystalline phases.Financial support under grant EP/H026177/1 from the EPSRC was used
The first principles calculation of transport coefficients
We demonstrate the practical feasibility of calculating transport
coefficients such as the viscosity of liquids completely from first principles
using the Green-Kubo relations. Results presented for liquid aluminum are shown
to have a statistical error of only ca. 5%. The importance of such calculations
is illustrated by results for a liquid iron-sulfur alloy under Earth's core
conditions, which indicate that the viscosity of the liquid outer core is not
substantially higher than that of typical liquid metals under ambient
conditions.Comment: four pages, including four figure
- …
