431,792 research outputs found

    Fluctuating magnetic moments in liquid metals

    Full text link
    We re-analyze literature data on neutron scattering by liquid metals to show that non-magnetic liquid metals possess a magnetic moment that fluctuates on a picosecond time scale. This time scale follows the motion of the cage-diffusion process in which an ion rattles around in the cage formed by its neighbors. We find that these fluctuating magnetic moments are present in liquid Hg, Al, Ga and Pb, and possibly also in the alkali metals.Comment: 17 pages, 5 figures, submitted to PR

    Surface Crystallization in a Liquid AuSi Alloy

    Full text link
    X-ray measurements reveal a crystalline monolayer at the surface of the eutectic liquid Au_{82}Si_{18}, at temperatures above the alloy's melting point. Surface-induced atomic layering, the hallmark of liquid metals, is also found below the crystalline monolayer. The layering depth, however, is threefold greater than that of all liquid metals studied to date. The crystallinity of the surface monolayer is notable, considering that AuSi does not form stable bulk crystalline phases at any concentration and temperature and that no crystalline surface phase has been detected thus far in any pure liquid metal or nondilute alloy. These results are discussed in relation to recently suggested models of amorphous alloys.Comment: 12 pages, 3 figures, published in Science (2006

    High temperature cobalt-base alloy Patent

    Get PDF
    High temperature cobalt-base alloy resistant to corrosion by liquid metals and to sublimation in vacuum environmen

    From Kondo Effect to Fermi Liquid

    Full text link
    The Kondo effect has been playing an important role in strongly correlated electon systems. The important point is that the magnetic impurity in metals is a typical example of the Fermi liquid. In the system the local spin is conserved in the ground state and continuity with respect to Coulomb repulsion UU is satisfied. This nature is satisfied also in the periodic systems as far as the systems remain as the Fermi liquid. This property of the Fermi liquid is essential to understand the cuprate high-Tc superconductors (HTSC). On the basis of the Fermi liquid theory we develop the transport theory such as the resistivity and the Hall coefficient in strongly correlated electron systems, such as HTSC, organic metals and heavy Fermion systems. The significant role of the vertex corrections for total charge- and heat-currents on the transport phenomena is explained. By taking the effect of the current vertex corrections into account, various typical non-Fermi-liquid-like transport phenomena in systems with strong magnetic and/or superconducting flucutations are explained within the Fermi liquid theory.Comment: 14 pages, an article for the special edition of JPSJ "Kondo Effect -- 40 Years after the Discovery

    Generic mechanism for generating a liquid-liquid phase transition

    Full text link
    Recent experimental results indicate that phosphorus, a single-component system, can have two liquid phases: a high-density liquid (HDL) and a low-density liquid (LDL) phase. A first-order transition between two liquids of different densities is consistent with experimental data for a variety of materials, including single-component systems such as water, silica and carbon. Molecular dynamics simulations of very specific models for supercooled water, liquid carbon and supercooled silica, predict a LDL-HDL critical point, but a coherent and general interpretation of the LDL-HDL transition is lacking. Here we show that the presence of a LDL and a HDL can be directly related to an interaction potential with an attractive part and two characteristic short-range repulsive distances. This kind of interaction is common to other single-component materials in the liquid state (in particular liquid metals), and such potentials are often used to decribe systems that exhibit a density anomaly. However, our results show that the LDL and HDL phases can occur in systems with no density anomaly. Our results therefore present an experimental challenge to uncover a liquid-liquid transition in systems like liquid metals, regardless of the presence of the density anomaly.Comment: 5 pages, 3 ps Fig

    INEL Spray-forming Research

    Get PDF
    Spray forming is a near-net-shape fabrication technology in which a spray of finely atomized liquid droplets is deposited onto a suitably shaped substrate or mold to produce a coherent solid. The technology offers unique opportunities for simplifying materials processing without sacrificing, and oftentimes substantially improving, product quality. Spray forming can be performed with a wide range of metals and nonmetals, and offers property improvements resulting from rapid solidification (e.g., refined microstructures, extended solid solubilities and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. Researchers at the Idaho National Engineering Laboratory (INEL) are developing spray-forming technology for producing near-net-shape solids and coatings of a variety of metals, polymers, and composite materials. Results from several spray forming programs are presented to illustrate the range of capabilities of the technique as well as the accompanying technical and economic benefits. Low-carbon steel strip greater than 0.75 mm thick and polymer membranes for gas/gas and liquid/liquid separations that were spray formed are discussed; recent advances in spray forming molds, dies, and other tooling using low-melting-point metals are described

    Transition of amorphous to crystalline oxide film in initial oxide overgrowth on liquid metals

    Get PDF
    It is important to understand the mechanism of oxidation in the initial stage on the free surface of liquid metals. Mittemeijer and co-workers recently developed a thermodynamic model to study the oxide overgrowth on a solid metal surface. Based on this model, we have developed a thermodynamic model to analyse the thermodynamic stability of oxide overgrowth on liquid metals. The thermodynamic model calculation revealed that the amorphous oxide phase is thermodynamically preferred up to 1.3 and 0.35 nm respectively, in the initial oxide overgrowth on liquid Al and Ga at the corresponding melting point. However, the amorphous phase is thermodynamically unstable in the initial oxide overgrowth on liquid Mg. The thermodynamic stability of amorphous phase in the Al and Ga oxide systems is attributed to lower sums of surface and interfacial energies for amorphous phases, compared to that of the corresponding crystalline phases.Financial support under grant EP/H026177/1 from the EPSRC was used

    The first principles calculation of transport coefficients

    Get PDF
    We demonstrate the practical feasibility of calculating transport coefficients such as the viscosity of liquids completely from first principles using the Green-Kubo relations. Results presented for liquid aluminum are shown to have a statistical error of only ca. 5%. The importance of such calculations is illustrated by results for a liquid iron-sulfur alloy under Earth's core conditions, which indicate that the viscosity of the liquid outer core is not substantially higher than that of typical liquid metals under ambient conditions.Comment: four pages, including four figure
    corecore