293,867 research outputs found

    Application of the z-transform to composite materials

    Get PDF
    Applications of the z-transform were made earlier to interfacial electron transfer involving semi-infinite solids, e.g., semiconductor/liquid and metal/liquid interfaces and scanning tunneling microscopy. It is shown how the method is readily adapted to treat composite materials, such as solid/solid interfaces or "molecular wire"/solid interfaces

    Gas Enrichment at Liquid-Wall Interfaces

    Get PDF
    Molecular dynamics simulations of Lennard-Jones systems are performed to study the effects of dissolved gas on liquid-wall and liquid-gas interfaces. Gas enrichment at walls is observed which for hydrophobic walls can exceed more than two orders of magnitude when compared to the gas density in the bulk liquid. As a consequence, the liquid structure close to the wall is considerably modified, leading to an enhanced wall slip. At liquid-gas interfaces gas enrichment is found which reduces the surface tension.Comment: main changes compared to version 1: flow simulations are included as well as different types of gase

    Particles adsorbed at various non-aqueous liquid-liquid interfaces

    Get PDF
    Particles adsorbed at liquid interfaces are commonly used to stabilise water-oil Pickering emulsions and water-air foams. The fundamental understanding of the physics of particles adsorbed at water-air and water-oil interfaces is improving significantly due to novel techniques that enable the measurement of the contact angle of individual particles at a given interface. The case of non-aqueous interfaces and emulsions is less studied in the literature. Non-aqueous liquid-liquid interfaces in which water is replaced by other polar solvents have properties similar to those of water-oil interfaces. Nanocomposites of non-aqueous immiscible polymer blends containing inorganic particles at the interface are of great interest industrially and consequently more work has been devoted to them. By contrast, the behaviour of particles adsorbed at oil-oil interfaces in which both oils are immiscible and of low dielectric constant (ε < 3) is scarcely studied. Hydrophobic particles are required to stabilise these oil-oil emulsions due to their irreversible adsorption, high interfacial activity and elastic shell behaviour

    Impedance spectroscopy of ions at liquid-liquid interfaces

    Full text link
    The possibility to extract properties of an interface between two immiscible liquids, e.g., electrolyte solutions or polyelectrolyte multilayers, by means of impedance spectroscopy is investigated theoretically within a dynamic density functional theory which is equivalent to the Nernst-Planck-Poisson theory. A novel approach based on a two-step fitting procedure of an equivalent circuit to impedance spectra is proposed which allows to uniquely separate bulk and interfacial elements. Moreover, the proposed method avoids overfitting of the bulk properties of the two liquids in contact and underfitting of the interfacial properties, as they might occur for standard one-step procedures. The key idea is to determine the bulk elements of the equivalent circuit in a first step by fitting corresponding sub-circuits to the spectra of uniform electrolyte solutions, and afterwards fitting the full equivalent circuit with fixed bulk elements to the impedance spectrum containing the interface. This approach is exemplified for an equivalent circuit which leads to a physically intuitive qualitative behavior as well as to quantitively realistic values of the interfacial elements. The proposed method is robust such that it can be expected to be applicable to a wide class of systems with liquid-liquid interfaces

    Fluctuating Interfaces in Liquid Crystals

    Get PDF
    We review and compare recent work on the properties of fluctuating interfaces between nematic and isotropic liquid-crystalline phases. Molecular dynamics and Monte Carlo simulations have been carried out for systems of ellipsoids and hard rods with aspect ratio 15:1, and the fluctuation spectrum of interface positions (the capillary wave spectrum) has been analyzed. In addition, the capillary wave spectrum has been calculated analytically within the Landau-de Gennes theory. The theory predicts that the interfacial fluctuations can be described in terms of a wave vector dependent interfacial tension, which is anisotropic at small wavelengths (stiff director regime) and becomes isotropic at large wavelengths (flexible director regime). After determining the elastic constants in the nematic phase, theory and simulation can be compared quantitatively. We obtain good agreement for the stiff director regime. The crossover to the flexible director regime is expected at wavelengths of the order of several thousand particle diameters, which was not accessible to our simulations

    Surface melting of methane and methane film on magnesium oxide

    Full text link
    Experiments on surface melting of several organic materials have shown contradictory results. We study the Van der Waals interactions between interfaces in surface melting of the bulk CH_4 and interfacial melting of the CH_4 film on the MgO substrate. This analysis is based on the theory of Dzyaloshinskii, Lifshitz, and Pitaevskii for dispersion forces in materials characterized by the frequency dependent dielectric functions. These functions for magnesium oxide and methane are obtained from optical data using an oscillator model of the dielectric response. The results show that a repulsive interaction between the solid-liquid and liquid-vapor interfaces exists for the bulk methane. We also found that the van der Waals forces between two solid-liquid interfaces are attractive for the CH_4 film on the MgO substrate. This implies that the van der Waals forces induce the presence of complete surface melting for the bulk methane and the absence of interfacial melting for CH_4 on the MgO substrate.Comment: 11 pages, 4 ps figure
    corecore