80,786 research outputs found
Linker-mediated self-assembly of mobile DNA-coated colloids
Developing construction methods of materials tailored for given applications
with absolute control over building block placement poses an immense challenge.
DNA-coated colloids offer the possibility of realising programmable
self-assembly, which, in principle, can assemble almost any structure in
equilibrium, but remains challenging experimentally. Here, we propose an
innovative system of linker-mediated mobile DNA-coated colloids (mDNACCs), in
which mDNACCs are bridged by the free DNA linkers in solution, whose two
single-stranded DNA tails can bind with specific single-stranded DNA receptors
of complementary sequence coated on colloids. We formulate a mean-field theory
efficiently calculating the effective interaction between mDNACCs, where the
entropy of DNA linkers plays a nontrivial role. Particularly, when the binding
between free DNA linkers in solution and the corresponding receptors on mDNACCs
is strong, the linker-mediated colloidal interaction is determined by the
linker entropy depending on the linker concentration
Data on face-to-face contacts in an office building suggests a low-cost vaccination strategy based on community linkers
Empirical data on contacts between individuals in social contexts play an
important role in providing information for models describing human behavior
and how epidemics spread in populations. Here, we analyze data on face-to-face
contacts collected in an office building. The statistical properties of
contacts are similar to other social situations, but important differences are
observed in the contact network structure. In particular, the contact network
is strongly shaped by the organization of the offices in departments, which has
consequences in the design of accurate agent-based models of epidemic spread.
We consider the contact network as a potential substrate for infectious disease
spread and show that its sparsity tends to prevent outbreaks of rapidly
spreading epidemics. Moreover, we define three typical behaviors according to
the fraction of links each individual shares outside its own department:
residents, wanderers and linkers. Linkers () act as bridges in the
network and have large betweenness centralities. Thus, a vaccination strategy
targeting linkers efficiently prevents large outbreaks. As such a behavior may
be spotted a priori in the offices' organization or from surveys, without the
full knowledge of the time-resolved contact network, this result may help the
design of efficient, low-cost vaccination or social-distancing strategies
Temperature-sensitive protein–DNA dimerizers
Programmable DNA-binding polyamides coupled to short peptides have led to the creation of synthetic artificial transcription factors. A hairpin polyamide-YPWM tetrapeptide conjugate facilitates the binding of a natural transcription factor Exd to an adjacent DNA site. Such small molecules function as protein-DNA dimerizers that stabilize complexes at composite DNA binding sites. Here we investigate the role of the linker that connects the polyamide to the peptide. We find that a substantial degree of variability in the linker length is tolerated at lower temperatures. At physiological temperatures, the longest linker tested confers a "switch"-like property on the protein-DNA dimerizer, in that it abolishes the ability of the YPWM moiety to recruit the natural transcription factor to DNA. These observations provide design principles for future artificial transcription factors that can be externally regulated and can function in concert with the cellular regulatory circuitry
- …
