424,204 research outputs found

    Rim inertial measuring system

    Get PDF
    The invention includes an angular momentum control device (AMCD) having a rim and several magnetic bearing stations. The AMCD is in a strapped down position on a spacecraft. Each magnetic bearing station comprises means, including an axial position sensor, for controlling the position of the rim in the axial direction; and means, including a radial position sensor, for controlling the position of the rim in the radial direction. A first computer receives the signals from all the axial position sensors and computes the angular rates about first and second mutually perpendicular axes in the plane of the rim and computes the linear acceleration along a third axis perpendicular to the first and second axes. A second computer receives the signals from all the radial position sensors and computes the linear accelerations along the first and second axes

    Inductive Linear-Position Sensor/Limit-Sensor Units

    Get PDF
    A new sensor provides an absolute position measurement. A schematic view of a motorized linear-translation stage that contains, at each end, an electronic unit that functions as both (1) a non-contact sensor that measures the absolute position of the stage and (2) a non-contact equivalent of a limit switch that is tripped when the stage reaches the nominal limit position. The need for such an absolute linear position-sensor/limit-sensor unit arises in the case of a linear-translation stage that is part of a larger system in which the actual stopping position of the stage (relative to the nominal limit position) must be known. Because inertia inevitably causes the stage to run somewhat past the nominal limit position, tripping of a standard limit switch or other limit sensor does not provide the required indication of the actual stopping position. This innovative sensor unit operates on an electromagnetic-induction principle similar to that of linear variable differential transformers (LVDTs

    Position Sensor Integral with a Linear Actuator

    Get PDF
    A noncontact position sensor has been designed for use with a specific two-dimensional linear electromagnetic actuator. To minimize the bulk and weight added by the sensor, the sensor has been made an integral part of the actuator: that is to say, parts of the actuator structure and circuitry are used for sensing as well as for varying position. The actuator (see Figure 1) includes a C-shaped permanent magnet and an armature that is approximately centered in the magnet gap. The intended function of the actuator is to cause the permanent magnet to translate to, and/or remain at, commanded x and y coordinates, relative to the armature. In addition, some incidental relative motion along the z axis is tolerated but not controlled. The sensor is required to measure the x and y displacements from a nominal central position and to be relatively insensitive to z displacement. The armature contains two sets of electromagnet windings oriented perpendicularly to each other and electrically excited in such a manner as to generate forces in the x,y plane to produce the required motion. Small sensor excitation coils are mounted on the pole tips of the permanent magnet. These coils are excited with a sine wave at a frequency of 20 kHz. This excitation is transformer-coupled to the armature windings. The geometric arrangement of the excitation coils and armature windings is such that the amplitudes of the 20-kHz voltages induced in the armature windings vary nearly linearly with x and y displacements and do not vary significantly with small z displacements. Because the frequency of 20 kHz is much greater than the maximum frequency characteristic of the actuation signals applied to the armature windings, there is no appreciable interference between actuator and sensor functions of the armature windings

    Magnetoresistive transducer for absolute position detection

    Get PDF
    In this paper a new method is presented for the measurement of absolute linear or angular position. The digital position information is recorded serially into one track of a suitable hard-magnetic medium. The stray field of this information layer determines the angular magnetisation distribution in a ferromagnetic (permalloy) detection strip which is positioned parallel to the track but with its plane perpendicular to the hard-magnetic layer. The bit pattern representing the position co-ordinate is regained by detection of the planar magnetoresistance effect in the sensor strip. Experiments have been performed using sensors with a resolution of 250 ¿m and 1 mm respectively and longitudinally recorded audio tape. Suitable sensor output signals could be measured without hysteresis

    A new sensor system for simultaneously detecting the position and incident angle of a light spot

    Get PDF
    The present paper describes a newly devised sensor, which has the ability to detect the two-dimensional position and the one-dimensional angle of a light spot simultaneously. Ordinary laser-based measurement systems utilize CCD or PSD sensors. These conventional sensors can detect only a light spot's position. When the sensor can detect the incident angle of a light spot as well as the position, the sensor has a wide range of applicability. The sensor consists of two linear array-type sensors whose depth positions are slightly different. We have designed and built a prototype sensor system. We experimentally verified the practicable accuracy of the present sensor system. We also applied the present sensor system to two typical laser-based measurement systems: 2-D position measurement, and 3-D shape measurement for specular objects. Experimental results show that the sensor system was applicable to a laser-based measurement system. </p

    Optimal sensor arrangements in Angle of Arrival (AoA) and range based localization with linear sensor arrays

    Get PDF
    This paper investigates the linear separation requirements for Angle-of-Arrival (AoA) and range sensors, in order to achieve the optimal performance in estimating the position of a target from multiple and typically noisy sensor measurements. We analyse the sensor-target geometry in terms of the Cramer&ndash;Rao inequality and the corresponding Fisher information matrix, in order to characterize localization performance with respect to the linear spatial distribution of sensors. Here in this paper, we consider both fixed and adjustable linear sensor arrays

    Position Reconstruction and Charge Distribution in LHCb VELO Silicon Sensors

    Get PDF
    In 2006, a partially equipped LHCb VELO detector half was characterised in a test beam experiment (Alignment Challenge and Detector Commissioning, ACDC3). The position reconstruction and resolution for 2-strip R-sensor clusters was studied as a function of strip pitch and track inclination on the sensor surface. The Charge Density Distribution (CDD) is derived from the weighted charge distribution. It becomes asymmetric for tracks non-perpendicular to the strip surface. It is shown that the asymmetric broadening of the CDD around the track intercept position results in a linear eta-function at higher angles (>6 degrees). The sensor spatial resolution is determined both using a linear weighted mean of strip charges, as well as a third-order polynomial approximation via a eta-correction. The experimental results are in agreement with previous simulations. Future studies are underway to determine the angle and pitch dependent parameters which will be implemented in the LHCb VELO cluster position software tools

    Active fault tolerant control for nonlinear systems with simultaneous actuator and sensor faults

    Get PDF
    The goal of this paper is to describe a novel fault tolerant tracking control (FTTC) strategy based on robust fault estimation and compensation of simultaneous actuator and sensor faults. Within the framework of fault tolerant control (FTC) the challenge is to develop an FTTC design strategy for nonlinear systems to tolerate simultaneous actuator and sensor faults that have bounded first time derivatives. The main contribution of this paper is the proposal of a new architecture based on a combination of actuator and sensor Takagi-Sugeno (T-S) proportional state estimators augmented with proportional and integral feedback (PPI) fault estimators together with a T-S dynamic output feedback control (TSDOFC) capable of time-varying reference tracking. Within this architecture the design freedom for each of the T-S estimators and the control system are available separately with an important consequence on robust L₂ norm fault estimation and robust L₂ norm closed-loop tracking performance. The FTTC strategy is illustrated using a nonlinear inverted pendulum example with time-varying tracking of a moving linear position reference. Keyword

    Design and Implementation of Position Estimator Algorithm on Voice Coil Motor

    Get PDF
    Voice Coil Motors (VCMs) have been an inevitable element in the mechanisms that have been used for precise positioning in the applications like 3D printing., micro-stereolithography., etc. These voice coil motors translate in a linear direction and require a high accuracy position sensor that amounts for a major part in the budget. In this research work., an effort has been made to design and implement an algorithm that would predict the displacement of VCM and eliminate the need of high cost sensors. VCM was integrated with dSPACE DS1104 R&D controller via linear current amplifier (LCAM) which acts as a driver circuit for VCM. Sine input was given to VCM with various amplitude and frequency and the corresponding displacement is measured by using linear variable differential transformer (LVDT). The position estimator algorithm is also implemented at the same time on VCM and its output is compared with that of LVDT. It is observed that there is 97.8 % accuracy in between algorithm output and LVDT output. Further., PID controller is used in integration with the novel algorithm to minimize the error. The estimator algorithm is tested for various amplitudes and frequencies and it is found that it has a very good agreement of 99.2% with the actual displacement measured with the help of LVDT
    corecore