10,918 research outputs found
Recommended from our members
Synthesis and reactivity of a nickel(ii) thioperoxide complex: demonstration of sulfide-mediated N2O reduction.
The thiohyponitrite ([SNNO]2-) complex, [K(18-crown-6)][L tBuNiII(κ2-SNNO)] (L tBu = {(2,6-iPr2C6H3)NC( t Bu)}2CH), extrudes N2 under mild heating to yield [K(18-crown-6)][L tBuNiII(η2-SO)] (1), along with minor products [K(18-crown-6)][L tBuNiII(η2-OSSO)] (2) and [K(18-crown-6)][L tBuNiII(η2-S2)] (3). Subsequent reaction of 1 with carbon monoxide (CO) results in the formation of [K(18-crown-6)][L tBuNiII(η2-SCO)] (4), [K(18-crown-6)][L tBuNiII(S,O:κ2-SCO2)] (5), [K(18-crown-6)][L tBuNiII(κ2-CO3)] (6), carbonyl sulfide (COS) (7), and [K(18-crown-6)][L tBuNiII(S2CO)] (8). To rationalize the formation of these products we propose that 1 first reacts with CO to form [K(18-crown-6)][L tBuNiII(S)] (I) and CO2, via O-atom abstraction. Subsequently, complex I reacts with CO or CO2 to form 4 and 5, respectively. Similarly, the formation of complex 6 and COS can be rationalized by the reaction of 1 with CO2 to form a putative Ni(ii) monothiopercarbonate, [K(18-crown-6)][L tBuNiII(κ2-SOCO2)] (11). The Ni(ii) monothiopercarbonate subsequently transfers a S-atom to CO to form COS and [K(18-crown-6)][L tBuNiII(κ2-CO3)] (6). Finally, the formation of 8 can be rationalized by the reaction of COS with I. Critically, the observation of complexes 4 and 5 in the reaction mixture reveals the stepwise conversion of [K(18-crown-6)][L tBuNiII(κ2-SNNO)] to 1 and then I, which represents the formal reduction of N2O by CO
Numerical Calculation of Coherent Synchrotron Radiation Effects Using TraFiC4
Coherent synchrotron radiation (CSR) occurs when short bunches travel on
strongly bent trajectories. Its effects on high-quality beams can be severe and
are well understood qualitatively. For quantitative results, however, one has
to rely on numerical methods. There exist several simulation codes utilizing
different approaches. We describe in some detail the code TraFiC4 developed at
DESY for design and analysis purposes, which approaches the problem from first
principles and solves the equations of motion either perturbatively or
self-consistently. We present some calculational results and comparison with
experimental data. Also, we give examples of how the code can be used to design
beamlines with minimal emittance growth due to CSR
Vanadium(V) oxo and imido calix[8]arene complexes: synthesis, structural studies, and ethylene homo/copolymerisation capability
Interaction of p-tert-butylcalix[8]areneH₈ (L⁸H₈) with in-situ generated [NaVO(Ot-Bu)₄] (from VOCl₃ and four equivalents of NaOtBu) afforded the dark brown complex [Na(NCMe)₅][(VO)₂L⁸H]·4MeCN (1·4MeCN), in which the calix[8]arene adopts a saddle-shaped conformation. Increasing (to four equivalents per L⁸) the amount of [NaVO(Ot-Bu)₄] present in the reaction, led to the formation of the yellow octa-vanadyl complex {[(Na(VO)₄L⁸)(Na(NCMe))₃] [Na(NCMe)₆}₂·10MeCN (2·10MeCN), in which the calix[8]arene adopts a pleated loop conformation. In the presence of adventitious oxygen, reaction of four equivalents of [VO(Ot-Bu)₃] (generated from VOCl₃ and 3KOtBu) with L⁸H₈ afforded the alkali-metal free green complex [(VO)₄L⁸(μ³-O)₂] (3); the solvates 3·3MeCN and 3·3CH₂Cl₂ have been isolated. In both solvates, the L⁸ ligand adopts a shallow saddle-shaped conformation, supporting a core comprising of a (VO)₄O₄ ladder. In the case of lithium, in order to obtain crystalline material, it was found necessary to reverse the order of addition such that lithium tert-butoxide was added to L⁸H₈, and then subsequently treated (at –78 ⁰C) with two equivalents of VOCl₃; crystallization from tetrahydrofuran (THF) afforded {(VO₂)₂Li₆[L⁸](thf)₂(OtBu)₂(Et₂O)₂}·Et₂O (4·Et₂O). In the structure of 4·Et₂O, vanadium, lithium and oxygen form a central lattern-type cage, which is capped top and bottom by an Li₂O₂2 diamond; the calix[8]arene is in a ‘down, down, out, out, down, down’ conformation. When the ‘same reaction’ was extracted into acetonitrile (MeCN), the salt complex [Li(NCMe)₄][(VO)₂L⁸H]·8MeCN (5.8MeCN) was formed. In 5·8MeCN, the [Li(NCMe)₄] cations reside between the anions in the clefts of L⁸H, the latter adopting a saddle-shaped conformation. Use of the imido precursors [V(Nt-Bu)(Ot-Bu)₃] and [V(Np-tolyl)(Ot-Bu)₃] and L⁸H₈, afforded, via an imido exchange, the salt [t-BuNH₃]{[V(p-tolylN)]₂L⁸H}·3½MeCN (6·3½MeCN). The molecular structures of 1 to 6 are reported; data collections for complexes 2·10MeCN, 3·3MeCN and 3·3CH₂Cl₂ required the use of synchrotron radiation. Complexes 1, 3 and 4 have been screened as pre-catalysts for the polymerization of ethylene in the presence of a variety of co-catalysts (with and without a re-activator) at various temperatures and for the co-polymerization of ethylene with propylene; results are compared versus the benchmark catalyst VO(OEt)Cl₂. In some cases, activities as high as 136,000 g/mmol.v.h were achievable, whilst it also proved possible to obtain higher molecular weight polymers (in comparible yields) versus the use of VO(OEt)Cl₂. In the case of the co-polymerization, the incorporation of propylene was 7.1 – 10.9 mol% (cf 10 mol% for VO(OEt)Cl₂), though catalytic activities were lower versus VO(OEt)Cl₂
Increased temperature in urban ground as source of sustainable energy
This paper is part of the Proceedings of the 10th International Conference on Urban Regeneration and Sustainability (Sustainable City 2015). http://www.witconferences.comDensely urbanized areas are characterized by special microclimatic conditions with typically elevated temperatures in comparison with the rural surrounding. This phenomenon is known as the urban heat island (UHI) effect, but not restricted exclusively to the atmosphere. We also find significant warming of the urban subsurface and shallow groundwater bodies. Here, main sources of heat are elevated ground surface temperatures, direct thermal exploitation of aquifers and heat losses from buildings and other infrastructure. By measuring the shallow groundwater temperature in several European cities, we identify that heat sources and associated transport processes interact at multiple spatial and temporal scales. The intensity of a subsurface UHI can reach the values of above 4 K in city centres with hotspots featuring temperatures up to +20°C. In comparison with atmospheric UHIs, subsurface UHIs represent long-term accumulations of heat in a relatively sluggish environment. This potentially impairs urban groundwater quality and permanently influences subsurface ecosystems. From another point of view, however, these thermal anomalies can also be seen as hidden large-scale batteries that constitute a source of shallow geothermal energy. Based on our measurements, data surveys and estimated physical ground properties, it is possible to estimate the theoretical geothermal potential of the urban groundwater bodies beneath the studied cities. For instance, by decreasing the elevated temperature of the shallow aquifer in Cologne, Germany, by only 2 K, the obtained energy could supply the space-heating demand of the entire city for at least 2.5 years. In the city of Karlsruhe, it is estimated that about 30% of annual heating demand could be sustainably supplied by tapping the anthropogenic heat loss in the urban aquifer. These results reveal the attractive potential of heated urban ground as energy reservoir and storage, which is in place at many places worldwide but so far not integrated in any city energy plans.This work was supported by the Swiss National Science Foundation (SNSF) under grant number 200021L 144288, and the German Research Foundation (DFG), under grant number BL 1015/4-1
Synthesis, X-ray Structures, Electronic Properties, and O\u3csub\u3e2\u3c/sub\u3e/NO Reactivities of Thiol Dioxygenase Active-Site Models
Mononuclear non-heme iron complexes that serve as structural and functional mimics of the thiol dioxygenases (TDOs), cysteine dioxygenase (CDO) and cysteamine dioxygenase (ADO), have been prepared and characterized with crystallographic, spectroscopic, kinetic, and computational methods. The high-spin Fe(II) complexes feature the facially coordinating tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine (Ph2TIP) ligand that replicates the three histidine (3His) triad of the TDO active sites. Further coordination with bidentate l-cysteine ethyl ester (CysOEt) or cysteamine (CysAm) anions yielded five-coordinate (5C) complexes that resemble the substrate-bound forms of CDO and ADO, respectively. Detailed electronic-structure descriptions of the [Fe(Ph2TIP)(LS,N)]BPh4 complexes, where LS,N = CysOEt (1) or CysAm (2), were generated through a combination of spectroscopic techniques [electronic absorption, magnetic circular dichroism (MCD)] and density functional theory (DFT). Complexes 1 and 2 decompose in the presence of O2 to yield the corresponding sulfinic acid (RSO2H) products, thereby emulating the reactivity of the TDO enzymes and related complexes. Rate constants and activation parameters for the dioxygenation reactions were measured and interpreted with the aid of DFT calculations for O2-bound intermediates. Treatment of the TDO models with nitric oxide (NO)—a well-established surrogate of O2—led to a mixture of high-spin and low-spin {FeNO}7 species at low temperature (−70 °C), as indicated by electron paramagnetic resonance (EPR) spectroscopy. At room temperature, these Fe/NO adducts convert to a common species with EPR and infrared (IR) features typical of cationic dinitrosyl iron complexes (DNICs). To complement these results, parallel spectroscopic, computational, and O2/NO reactivity studies were carried out using previously reported TDO models that feature an anionic hydrotris(3-phenyl-5-methyl-pyrazolyl)borate (Ph,MeTp–) ligand. Though the O2 reactivities of the Ph2TIP- and Ph,MeTp-based complexes are quite similar, the supporting ligand perturbs the energies of Fe 3d-based molecular orbitals and modulates Fe–S bond covalency, suggesting possible rationales for the presence of neutral 3His coordination in CDO and ADO
Influence of enzymatic and acidic demethoxylation on structure formation in sugar containing citrus pectin gels
Aim of the present study was to investigate the impact of different demethoxylation methods and the co-occuring side effects on the molecular properties and structure formation in pectin gels.
A high-methoxylated citrus pectin (HMP) was demethoxylated using either hydrochloric acid or pectin methylesterases of plant (pPME) or fungal (fPME) origin. pPME treatment causes a more block-wise distribution of free carboxyl groups, fPME or acidic treatment a random distribution. Twelve pectin samples with four different degrees of methoxylation (DM) between 62% and 41% were prepared. The gelation process was studied by oscillatory measurements.
In pectin samples from pPME treatment structure formation started at higher temperature and the final gels were more elastic in comparison to pectin from the two other modifications. The impact of the block-wise distribution of the free carboxyl groups became more evident with decreasing DM. The gelling process of pectin samples with random distribution was similar independent of DM.Side effects of all demethoxylation reactions were an altered sodium ion content (high in enzymatically treated pectin, close to zero in acidic treated) and a decrease of the molecular weight with increasing degree of demethoxylation. These side effects additionally altered the gelation process and the final gel properties in different ways
The evaluation challenge
For years writers concerned with information literacy (IL) – essentially the knowledge, skills and understanding needed to find and use information effectively – have stressed the importance of learners evaluating the material with which they come into contact whilst searching. As many commentators explain, the need to make sound judgements has become especially important today, since so much information searching now involves the World Wide Web. The evaluative framework proposed in this article was designed with the aim of helping to narrow the gap between discoveries emerging from research and the teaching of IL
On the simulation of enzymatic digest patterns: the fragmentation of oligomeric and polymeric galacturonides by endo-polygalacturonase II
A simulation methodology for predicting the time-course of enzymatic
digestions is described. The model is based solely on the enzyme's subsite
architecture and concomitant binding energies. This allows subsite binding
energies to be used to predict the evolution of the relative amounts of
different products during the digestion of arbitrary mixtures of oligomeric or
polymeric substrates. The methodology has been specifically demonstrated by
studying the fragmentation of a population of oligogalacturonides of varying
degrees of polymerization, when digested by endo-polygalacturonase II (endo-PG
II) from Aspergillus niger.Comment: Preprint - has been accepted to Biochimica et Biophysica Act
Surface and Subsurface Oxidation of Mo2C/Mo(100): Low-Energy Ion-Scattering, Auger Electron, Angle-Resolved X-Ray Photoelectron, an Mass Spectrometry Studies
slutrapport från projektet Informationssökning, didaktik och lärande (IDOL) / [Louise Limberg och Lena Folkesson
- …
