2,264 research outputs found

    A Necessary Condition for existence of Lie Symmetries in Quasihomogeneous Systems of Ordinary Differential Equations

    Full text link
    Lie symmetries for ordinary differential equations are studied. In systems of ordinary differential equations, there do not always exist non-trivial Lie symmetries around equilibrium points. We present a necessary condition for existence of Lie symmetries analytic in the neighbourhood of an equilibrium point. In addition, this result can be applied to a necessary condition for existence of a Lie symmetry in quasihomogeneous systems of ordinary differential equations. With the help of our main theorem, it is proved that several systems do not possess any analytic Lie symmetries.Comment: 15 pages, no figures, AMSLaTe

    Gravitating fluids with Lie symmetries

    Full text link
    We analyse the underlying nonlinear partial differential equation which arises in the study of gravitating flat fluid plates of embedding class one. Our interest in this equation lies in discussing new solutions that can be found by means of Lie point symmetries. The method utilised reduces the partial differential equation to an ordinary differential equation according to the Lie symmetry admitted. We show that a class of solutions found previously can be characterised by a particular Lie generator. Several new families of solutions are found explicitly. In particular we find the relevant ordinary differential equation for all one-dimensional optimal subgroups; in several cases the ordinary differential equation can be solved in general. We are in a position to characterise particular solutions with a linear barotropic equation of state.Comment: 13 pages, To appear in J. Phys. A: Math. Theo

    Lie symmetries of multidimensional difference equations

    Full text link
    A method is presented for calculating the Lie point symmetries of a scalar difference equation on a two-dimensional lattice. The symmetry transformations act on the equations and on the lattice. They take solutions into solutions and can be used to perform symmetry reduction. The method generalizes one presented in a recent publication for the case of ordinary difference equations. In turn, it can easily be generalized to difference systems involving an arbitrary number of dependent and independent variables
    • …
    corecore