217,810 research outputs found
Reset-free Trial-and-Error Learning for Robot Damage Recovery
The high probability of hardware failures prevents many advanced robots
(e.g., legged robots) from being confidently deployed in real-world situations
(e.g., post-disaster rescue). Instead of attempting to diagnose the failures,
robots could adapt by trial-and-error in order to be able to complete their
tasks. In this situation, damage recovery can be seen as a Reinforcement
Learning (RL) problem. However, the best RL algorithms for robotics require the
robot and the environment to be reset to an initial state after each episode,
that is, the robot is not learning autonomously. In addition, most of the RL
methods for robotics do not scale well with complex robots (e.g., walking
robots) and either cannot be used at all or take too long to converge to a
solution (e.g., hours of learning). In this paper, we introduce a novel
learning algorithm called "Reset-free Trial-and-Error" (RTE) that (1) breaks
the complexity by pre-generating hundreds of possible behaviors with a dynamics
simulator of the intact robot, and (2) allows complex robots to quickly recover
from damage while completing their tasks and taking the environment into
account. We evaluate our algorithm on a simulated wheeled robot, a simulated
six-legged robot, and a real six-legged walking robot that are damaged in
several ways (e.g., a missing leg, a shortened leg, faulty motor, etc.) and
whose objective is to reach a sequence of targets in an arena. Our experiments
show that the robots can recover most of their locomotion abilities in an
environment with obstacles, and without any human intervention.Comment: 18 pages, 16 figures, 3 tables, 6 pseudocodes/algorithms, video at
https://youtu.be/IqtyHFrb3BU, code at
https://github.com/resibots/chatzilygeroudis_2018_rt
Physically Embedded Genetic Algorithm Learning in Multi-Robot Scenarios: The PEGA algorithm
We present experiments in which a group of autonomous mobile robots learn to perform fundamental sensor-motor tasks through a collaborative learning process. Behavioural strategies, i.e. motor responses to sensory stimuli, are encoded by means of genetic strings stored on the individual robots, and adapted through a genetic algorithm (Mitchell, 1998) executed by the entire robot collective: robots communicate their own strings and corresponding fitness to each other, and then execute a genetic algorithm to improve their individual behavioural strategy.
The robots acquired three different sensormotor competences, as well as the ability to select one of two, or one of three behaviours depending on context ("behaviour management"). Results show that fitness indeed increases with increasing learning time, and the analysis of the acquired behavioural strategies demonstrates that they are effective in accomplishing the desired task
Online Ensemble Learning of Sensorimotor Contingencies
Forward models play a key role in cognitive agents by providing predictions of the sensory consequences of motor commands, also known as sensorimotor contingencies (SMCs). In continuously evolving environments, the ability to anticipate is fundamental in distinguishing cognitive from reactive agents, and it is particularly relevant for autonomous robots, that must be able to adapt their models in an online manner. Online learning skills, high accuracy of the forward models and multiple-step-ahead predictions are needed to enhance the robots’ anticipation capabilities. We propose an online heterogeneous ensemble learning method for building accurate forward models of SMCs relating motor commands to effects in robots’ sensorimotor system, in particular considering proprioception and vision. Our method achieves up to 98% higher accuracy both in short and long term predictions, compared to single predictors and other online and offline homogeneous ensembles. This method is validated on two different humanoid robots, namely the iCub and the Baxter
Learning Models for Following Natural Language Directions in Unknown Environments
Natural language offers an intuitive and flexible means for humans to
communicate with the robots that we will increasingly work alongside in our
homes and workplaces. Recent advancements have given rise to robots that are
able to interpret natural language manipulation and navigation commands, but
these methods require a prior map of the robot's environment. In this paper, we
propose a novel learning framework that enables robots to successfully follow
natural language route directions without any previous knowledge of the
environment. The algorithm utilizes spatial and semantic information that the
human conveys through the command to learn a distribution over the metric and
semantic properties of spatially extended environments. Our method uses this
distribution in place of the latent world model and interprets the natural
language instruction as a distribution over the intended behavior. A novel
belief space planner reasons directly over the map and behavior distributions
to solve for a policy using imitation learning. We evaluate our framework on a
voice-commandable wheelchair. The results demonstrate that by learning and
performing inference over a latent environment model, the algorithm is able to
successfully follow natural language route directions within novel, extended
environments.Comment: ICRA 201
Geometry-aware Manipulability Learning, Tracking and Transfer
Body posture influences human and robots performance in manipulation tasks,
as appropriate poses facilitate motion or force exertion along different axes.
In robotics, manipulability ellipsoids arise as a powerful descriptor to
analyze, control and design the robot dexterity as a function of the
articulatory joint configuration. This descriptor can be designed according to
different task requirements, such as tracking a desired position or apply a
specific force. In this context, this paper presents a novel
\emph{manipulability transfer} framework, a method that allows robots to learn
and reproduce manipulability ellipsoids from expert demonstrations. The
proposed learning scheme is built on a tensor-based formulation of a Gaussian
mixture model that takes into account that manipulability ellipsoids lie on the
manifold of symmetric positive definite matrices. Learning is coupled with a
geometry-aware tracking controller allowing robots to follow a desired profile
of manipulability ellipsoids. Extensive evaluations in simulation with
redundant manipulators, a robotic hand and humanoids agents, as well as an
experiment with two real dual-arm systems validate the feasibility of the
approach.Comment: Accepted for publication in the Intl. Journal of Robotics Research
(IJRR). Website: https://sites.google.com/view/manipulability. Code:
https://github.com/NoemieJaquier/Manipulability. 24 pages, 20 figures, 3
tables, 4 appendice
- …
