92,329 research outputs found

    Laplace transformations of hydrodynamic type systems in Riemann invariants: periodic sequences

    Full text link
    The conserved densities of hydrodynamic type system in Riemann invariants satisfy a system of linear second order partial differential equations. For linear systems of this type Darboux introduced Laplace transformations, generalising the classical transformations in the scalar case. It is demonstrated that Laplace transformations can be pulled back to the transformations of the corresponding hydrodynamic type systems. We discuss periodic Laplace sequences of with the emphasize on the simplest nontrivial case of period 2. For 3-component systems in Riemann invariants a complete discription of closed quadruples is proposed. They turn to be related to a special quadratic reduction of the (2+1)-dimensional 3-wave system which can be reduced to a triple of pairwize commuting Monge-Ampere equations. In terms of the Lame and rotation coefficients Laplace transformations have a natural interpretation as the symmetries of the Dirac operator, associated with the (2+1)-dimensional n-wave system. The 2-component Laplace transformations can be interpreted also as the symmetries of the (2+1)-dimensional integrable equations of Davey-Stewartson type. Laplace transformations of hydrodynamic type systems originate from a canonical geometric correspondence between systems of conservation laws and line congruences in projective space.Comment: 22 pages, Late

    Moduli spaces of meromorphic functions and determinant of Laplacian

    Full text link
    The Hurwitz space is the moduli space of pairs (X,f)(X,f) where XX is a compact Riemann surface and ff is a meromorphic function on XX. We study the Laplace operator Δdf2\Delta^{|df|^2} of the flat singular Riemannian manifold (X,df2)(X,|df|^2). We define a regularized determinant for Δdf2\Delta^{|df|^2} and study it as a functional on the Hurwitz space. We prove that this functional is related to a system of PDE which admits explicit integration. This leads to an explicit expression for the determinant of the Laplace operator in terms of the basic objects on the underlying Riemann surface (the prime form, theta-functions, the canonical meromorphic bidifferential) and the divisor of the meromorphic differential dfdf. The proof has several parts that can be of independent interest. As an important intermediate result we prove a decomposition formula of the type of Burghelea-Friedlander-Kappeler for the determinant of the Laplace operator on flat surfaces with conical singularities and Euclidean or conical ends. We introduce and study the SS-matrix, S(λ)S(\lambda), of a surface with conical singularities as a function of the spectral parameter λ\lambda and relate its behavior at λ=0\lambda=0 with the Schiffer projective connection on the Riemann surface XX. We also prove variational formulas for eigenvalues of the Laplace operator of a compact surface with conical singularities when the latter move.Comment: 43 page

    The Spectral Zeta Function for Laplace Operators on Warped Product Manifolds of the type I×fNI\times_{f} N

    Full text link
    In this work we study the spectral zeta function associated with the Laplace operator acting on scalar functions defined on a warped product of manifolds of the type I×fNI\times_{f} N where II is an interval of the real line and NN is a compact, dd-dimensional Riemannian manifold either with or without boundary. Starting from an integral representation of the spectral zeta function, we find its analytic continuation by exploiting the WKB asymptotic expansion of the eigenfunctions of the Laplace operator on MM for which a detailed analysis is presented. We apply the obtained results to the explicit computation of the zeta regularized functional determinant and the coefficients of the heat kernel asymptotic expansion.Comment: 29 pages, LaTe
    corecore