303 research outputs found

    Relational Parametricity and Control

    Full text link
    We study the equational theory of Parigot's second-order λμ-calculus in connection with a call-by-name continuation-passing style (CPS) translation into a fragment of the second-order λ-calculus. It is observed that the relational parametricity on the target calculus induces a natural notion of equivalence on the λμ-terms. On the other hand, the unconstrained relational parametricity on the λμ-calculus turns out to be inconsistent with this CPS semantics. Following these facts, we propose to formulate the relational parametricity on the λμ-calculus in a constrained way, which might be called ``focal parametricity''.Comment: 22 pages, for Logical Methods in Computer Scienc

    Tarski's influence on computer science

    Full text link
    The influence of Alfred Tarski on computer science was indirect but significant in a number of directions and was in certain respects fundamental. Here surveyed is the work of Tarski on the decision procedure for algebra and geometry, the method of elimination of quantifiers, the semantics of formal languages, modeltheoretic preservation theorems, and algebraic logic; various connections of each with computer science are taken up

    Recursion does not always help

    Full text link
    We show that adding recursion does not increase the total functions definable in the typed λβη\lambda\beta\eta-calculus or the partial functions definable in the λΩ\lambda\Omega-calculus. As a consequence, adding recursion does not increase the class of partial or total definable functions on free algebras and so, in particular, on the natural numbers.Comment: Improved presentation a littl

    Generic refinements for behavioral specifications

    Get PDF
    This thesis investigates the properties of generic refinements of behavioral specifications. At the base of this investigation stands the view from algebraic specification that abstract data types can be modeled as algebras. A specification of a data type is formed from a syntactic part, i.e. a signature detailing the interface of the data type, and a semantic part, i.e. a class of algebras (called its models) that contains the valid implementations of that data type. Typically, the class of algebras that constitutes the semantics of a specification is defined as the class of algebras that satisfy some given set of axioms. The behavioral aspect of a specification comes from relaxing the requirements imposed by axioms, i.e. by allowing in the semantics of a specification not only the algebras that literally satisfy the given axioms, but also those algebras that appear to behave according to those axioms. Several frameworks have been developed to express the adequate notions of what it means to be a behavioral model of a set of axioms, and our choice as the setting for this thesis will be Bidoit and Hennicker’s Constructor-based Observational Logic, abbreviated COL. Using specifications that rely on the behavioral aspects defined by COL we study the properties of generic refinements between specifications. Refinement is a relation between specifications. The refinement of a target specification by a source specification is given by a function that constructs models of the target specification from the models of the source specification. These functions are called constructions and the source and target specifications that they relate are called the context of the refinement. The theory of refinements between algebraic specifications, with or without the behavioral aspect, has been well studied in the literature. Our analysis starts from those studies and adapts them to COL, which is a relatively new framework, and for which refinement has been studied only briefly. The main part of this thesis is formed by the analysis of generic refinements. Generic refinements are represented by constructions that can be used in various contexts, not just in the context of their definition. These constructions provide the basis for modular refinements, i.e. one can use a locally defined construction in a global context in order to refine just a part of a source specification. The ability to use a refinement outside its original context imposes additional requirements on the construction that represents it. An implementer writing such a construction must not use details of the source models that can be contradicted by potential global context requirements. This means, roughly speaking, that he must use only the information available in the source signature and also any a priori assumption that was made about the contexts of use. We look at the basic case of generic refinements that are reusable in every global context, and then we treat a couple of variations, i.e. generic refinements for which an a priori assumption it is made about the nature of their usage contexts. In each of these cases we follow the same pattern of investigation. First we characterize the constructions that ensure reusability by means of preservation of relations, and then, in most cases, we show that such constructions must be definable in terms of their source signature. Throughout the thesis we use an informal analogy between generic (i.e. polymorphic) functions that appear in second order lambda calculus and the generic refinements that we are studying. This connection will enable us to describe some properties of generic refinements that correspond to the properties of polymorphic functions inferred from their types and named “theorems for free” by Wadler. The definability results, the connection between the assumptions made about the usage contexts and the characterizing relations, and the “theorems for free” for behavioral specifications constitute the main contributions of this thesis

    Equational definability of (complementary) central elements

    Get PDF
    For a variety with weak existentially definable factor congruences, we characterize whenthe properties "e is a central element" and "e and f are complementary central elements"are definable by (∀ V p = q)-formulas and by (V p = q)-formulas.Fil: Badano, Mariana. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vaggione, Diego Jose. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentin

    Decreasing Diagrams for Confluence and Commutation

    Full text link
    Like termination, confluence is a central property of rewrite systems. Unlike for termination, however, there exists no known complexity hierarchy for confluence. In this paper we investigate whether the decreasing diagrams technique can be used to obtain such a hierarchy. The decreasing diagrams technique is one of the strongest and most versatile methods for proving confluence of abstract rewrite systems. It is complete for countable systems, and it has many well-known confluence criteria as corollaries. So what makes decreasing diagrams so powerful? In contrast to other confluence techniques, decreasing diagrams employ a labelling of the steps with labels from a well-founded order in order to conclude confluence of the underlying unlabelled relation. Hence it is natural to ask how the size of the label set influences the strength of the technique. In particular, what class of abstract rewrite systems can be proven confluent using decreasing diagrams restricted to 1 label, 2 labels, 3 labels, and so on? Surprisingly, we find that two labels suffice for proving confluence for every abstract rewrite system having the cofinality property, thus in particular for every confluent, countable system. Secondly, we show that this result stands in sharp contrast to the situation for commutation of rewrite relations, where the hierarchy does not collapse. Thirdly, investigating the possibility of a confluence hierarchy, we determine the first-order (non-)definability of the notion of confluence and related properties, using techniques from finite model theory. We find that in particular Hanf's theorem is fruitful for elegant proofs of undefinability of properties of abstract rewrite systems

    Logical Relations for Monadic Types

    Full text link
    Logical relations and their generalizations are a fundamental tool in proving properties of lambda-calculi, e.g., yielding sound principles for observational equivalence. We propose a natural notion of logical relations able to deal with the monadic types of Moggi's computational lambda-calculus. The treatment is categorical, and is based on notions of subsconing, mono factorization systems, and monad morphisms. Our approach has a number of interesting applications, including cases for lambda-calculi with non-determinism (where being in logical relation means being bisimilar), dynamic name creation, and probabilistic systems.Comment: 83 page
    corecore