427,506 research outputs found

    Noninvasive Urinary Monitoring of Progression in IgA Nephropathy.

    Get PDF
    Standard methods for detecting and monitoring of IgA nephropathy (IgAN) have conventionally required kidney biopsies or suffer from poor sensitivity and specificity. The Kidney Injury Test (KIT) Assay of urinary biomarkers has previously been shown to distinguish between various kidney pathologies, including chronic kidney disease, nephrolithiasis, and transplant rejection. This validation study uses the KIT Assay to investigate the clinical utility of the non-invasive detection of IgAN and predicting the progression of renal damage over time. The study design benefits from longitudinally collected urine samples from an investigator-initiated, multicenter, prospective study, evaluating the efficacy of corticosteroids versus Rituximab for preventing progressive IgAN. A total of 131 urine samples were processed for this study; 64 urine samples were collected from 34 IgAN patients, and urine samples from 64 demographically matched healthy controls were also collected; multiple urinary biomarkers consisting of cell-free DNA, methylated cell-free DNA, DMAIMO, MAMIMO, total protein, clusterin, creatinine, and CXCL10 were measured by the microwell-based KIT Assay. An IgA risk score (KIT-IgA) was significantly higher in IgAN patients as compared to healthy control (87.76 vs. 14.03, p < 0.0001) and performed better than proteinuria in discriminating between the two groups. The KIT Assay biomarkers, measured on a spot random urine sample at study entry could distinguish patients likely to have progressive renal dysfunction a year later. These data support the pursuit of larger prospective studies to evaluate the predictive performance of the KIT-IgA score in both screening for non-invasive diagnosis of IgAN, and for predicting risk of progressive renal disease from IgA and utilizing the KIT score for potentially evaluating the efficacy of IgAN-targeted therapies

    A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys

    Get PDF
    Defining cellular and molecular identities within the kidney is necessary to understand its organization and function in health and disease. Here we demonstrate a reproducible method with minimal artifacts for single-nucleus Droplet-based RNA sequencing (snDrop-Seq) that we use to resolve thirty distinct cell populations in human adult kidney. We define molecular transition states along more than ten nephron segments spanning two major kidney regions. We further delineate cell type-specific expression of genes associated with chronic kidney disease, diabetes and hypertension, providing insight into possible targeted therapies. This includes expression of a hypertension-associated mechano-sensory ion channel in mesangial cells, and identification of proximal tubule cell populations defined by pathogenic expression signatures. Our fully optimized, quality-controlled transcriptomic profiling pipeline constitutes a tool for the generation of healthy and diseased molecular atlases applicable to clinical samples

    The immune cell landscape in kidneys of patients with lupus nephritis.

    Get PDF
    Lupus nephritis is a potentially fatal autoimmune disease for which the current treatment is ineffective and often toxic. To develop mechanistic hypotheses of disease, we analyzed kidney samples from patients with lupus nephritis and from healthy control subjects using single-cell RNA sequencing. Our analysis revealed 21 subsets of leukocytes active in disease, including multiple populations of myeloid cells, T cells, natural killer cells and B cells that demonstrated both pro-inflammatory responses and inflammation-resolving responses. We found evidence of local activation of B cells correlated with an age-associated B-cell signature and evidence of progressive stages of monocyte differentiation within the kidney. A clear interferon response was observed in most cells. Two chemokine receptors, CXCR4 and CX3CR1, were broadly expressed, implying a potentially central role in cell trafficking. Gene expression of immune cells in urine and kidney was highly correlated, which would suggest that urine might serve as a surrogate for kidney biopsies

    Combined liver-kidney transplantation: Analysis of patients with preformed lymphocytotoxic antibody

    Get PDF
    In this report, we address combined liver-kidney transplantation, with particular attention to the apparent phenomenon of protection of kidney allografts to antibody mediated destruction by liver allografts. Four patients were found to have positive crossmatch before the liver phase of the combined transplant (pre-OT/KT samples). These positive crossmatches were due entirely to anti-HLA class I antibodies, as demonstrated by their removal by immunoabsorption on pololed platelets. In three of these patients, post-OT/pre-KT samples showed a conversion to a negative crossmatch (in the fourth patient this was not done). A kidney allograft, harveted from the same donor, was then placed into the recipient, and in patients no. 3, 7, and 12, good initial function was noted. In one of these patients was there evidence of hyperacute rejection. Post-OT/KT samples were collected in patients no. 3, 7, and 8, and then analyzed for the reappearance of donor specific lymphocytotoxic antibodies in the posttransplant period (data on patient no. 12 was not available at time of preparation). Lymphocytotoxic antibodies with donor specificity could not be detected in any of the samples during the first week posttransplant. The decrease in %PRA and conversion of a positive to negative crossmatch following liver transplantation was correlated to the HLA specificty of the antibody found in the pretransplant serum and the HLA type of the tranplanted organs. In the two instances where an HLA specificity could be determined by panel analysis, transplantation with donor organs bearing these HLA specificities led to a specific disppearance of these antibodies during the postransplant phase

    Soil Chemical Properties Under Conservation Agriculture and Cereal-Based Cropping System in Eastern Tarai of Nepal

    Full text link
    Field experiments were conducted for four years (2014-2017) at five locations namely Salbani, Bhokraha, Simariya, Bhaluwa and Kaptanganj of Sunsari district to assess the changes in soil chemical properties under conservation agriculture (CA)-based practices in two cropping systems namely rice-kidney bean-maize at Salbani and rice-wheat at rest of the locations. In rice-wheat cropping system, there were four treatments: (1) conventional tillage (CT) for rice transplantation and subsequent wheat sowing, (2) conventional tillage rice transplantation followed by zero tillage (ZT) wheat, (3) unpuddled rice transplantation followed by zero tillage wheat, (4) zero tillage in both rice and wheat. Similarly, in rice-kidney bean-maize cropping system, there were four treatments; (1) conventional tillage for rice transplantation and sowing of both kidney bean and maize, (2) conventional tillage rice transplantation followed by zero tillage in both kidney bean and maize, (3) unpuddled rice transplantation followed by zero tillage in both kidney bean and maize, (4) zero tillage in all three crops. Soil samples were taken at initial and every year after rice harvest.The soil samples were analyzed for total nitrogen, available phosphorus, available potassium, pH and soil organic matter.Total nitrogen (N) showed a slightly decreasing trend in the first three years and showed a slight increase at the end of experiment under ZT in all locations. The total N under ZT changed from 0.12 to 0.13%, 0.05 to 0.06%, 0.10 to 0.12%, 0.11 to 0.08% and 0.09 to 0.13% in Salbani, Bhokraha, Simariya, Bhaluwa and Kaptanganj, respectively.  All locations showed the positive values of available potassium; Salbani  revealing considerable change of 64.3 to 78.5 mg/kg in CT while 68.4 to 73.3 mg/kg in ZT condition. The treatment where rice was transplanted in unpuddled condition and zero tilled to wheat, had a mean value of available phosphorus and potassium as 87.3 and 81.9 mg/kg respectively. Soil pH ranged from 4.8 to 7.1 in CT while it was 5.2 to 6.8 in ZT across the locations. The change in soil organic matter in CT of all locations except Salbani was narrower as compared to ZT

    Evaluation of Canine Pancreas-Specific Lipase Activity, Lipase Activity, and Trypsin-Like Immunoreactivity in an Experimental Model of Acute Kidney Injury in Dogs.

    Get PDF
    BackgroundDiagnosis of pancreatitis in dogs is complicated by extrapancreatic disorders that can alter the results of laboratory tests. Extrapancreatic disorders can also affect the diagnosis of exocrine pancreatic insufficiency (EPI). The effects of acute kidney injury (AKI) on pancreas-specific lipase activity (Spec cPL(®) Test), serum lipase activity and trypsin-like immunoreactivity (TLI) in dogs have not been evaluated.Hypothesis/objectivesSerum Spec cPL, lipase activity, and TLI concentrations will increase secondary to decreased kidney function.AnimalsFive purpose-bred dogs.MethodsExperimental prospective study. Gentamicin was used to induce AKI in 5 purpose-bred dogs. Serum samples were collected for measurement of creatinine, Spec cPL, lipase activity and TLI over 60 days, during both induction of, and recovery from, AKI.ResultsAll dogs developed and recovered from AKI. Six of 52 (12%) serum Spec cPL concentrations were increased (2 in the equivocal zone and 4 consistent with pancreatitis) in 2 of 5 (40%) dogs. Two of 51 (4%) serum lipase activity values were increased in 2 of 5 dogs. Serum TLI was increased above the reference range in 17 of 50 (34%) samples in 3 of 5 dogs. For all biomarkers, there was no consistent correlation with increases in serum creatinine concentration.Conclusions and clinical importanceDecreased renal excretion during experimental AKI did not cause consistent and correlated increases in serum Spec cPL, lipase activity, or TLI in this cohort of dogs

    An observational cohort feasibility study to identify microvesicle and miRNA biomarkers of acute kidney injury following paediatric cardiac surgery

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Objectives: Micro-RNA, small noncoding RNA fragments involved in gene regulation, and microvesicles, membrane-bound particles less than 1 μm known to regulate cellular processes including responses to injury, may serve as disease-specific biomarkers of acute kidney injury. We evaluated the feasibility of measuring these signals as well as other known acute kidney injury biomarkers in a mixed pediatric cardiac surgery population. Design: Single center prospective cohort feasibility study. Setting: PICU. Patients: Twenty-four children (≤ 17 yr) undergoing cardiac surgery with cardiopulmonary bypass without preexisting inflammatory state, acute kidney injury, or extracorporeal life support. Interventions: None. Measurements and Main Results: Acute kidney injury was defined according to modified Kidney Diseases Improving Global Outcomes criteria. Blood and urine samples were collected preoperatively and at 6–12 and 24 hours. Microvesicles derivation was assessed using flow cytometry and NanoSight analysis. Micro-RNAs were isolated from plasma and analyzed by microarray and quantitative real-time polymerase chain reaction. Data completeness for the primary outcomes was 100%. Patients with acute kidney injury (n = 14/24) were younger, underwent longer cardiopulmonary bypass, and required greater inotrope support. Acute kidney injury subjects had different fractional content of platelets and endothelial-derived microvesicles before surgery. Platelets and endothelial microvesicles levels were higher in acute kidney injury patients. A number of micro-RNA species were differentially expressed in acute kidney injury patients. Pathway analysis of candidate target genes in the kidney suggested that the most often affected pathways were phosphatase and tensin homolog and signal transducer and activator of transcription 3 signaling. Conclusions: Microvesicles and micro-RNAs expression patterns in pediatric cardiac surgery patients can be measured in children and potentially serve as tools for stratification of patients at risk of acute kidney injury
    corecore