2,728 research outputs found
KERT: Automatic Extraction and Ranking of Topical Keyphrases from Content-Representative Document Titles
We introduce KERT (Keyphrase Extraction and Ranking by Topic), a framework
for topical keyphrase generation and ranking. By shifting from the
unigram-centric traditional methods of unsupervised keyphrase extraction to a
phrase-centric approach, we are able to directly compare and rank phrases of
different lengths. We construct a topical keyphrase ranking function which
implements the four criteria that represent high quality topical keyphrases
(coverage, purity, phraseness, and completeness). The effectiveness of our
approach is demonstrated on two collections of content-representative titles in
the domains of Computer Science and Physics.Comment: 9 page
Thesaurus based automatic keyphrase indexing
We propose a new method that enhances automatic keyphrase extraction by using semantic information on terms and phrases gleaned from a domain-specific thesaurus. We evaluate the results against keyphrase sets assigned by a state-of-the-art keyphrase extraction system and those assigned by six professional indexers
DivGraphPointer: A Graph Pointer Network for Extracting Diverse Keyphrases
Keyphrase extraction from documents is useful to a variety of applications
such as information retrieval and document summarization. This paper presents
an end-to-end method called DivGraphPointer for extracting a set of diversified
keyphrases from a document. DivGraphPointer combines the advantages of
traditional graph-based ranking methods and recent neural network-based
approaches. Specifically, given a document, a word graph is constructed from
the document based on word proximity and is encoded with graph convolutional
networks, which effectively capture document-level word salience by modeling
long-range dependency between words in the document and aggregating multiple
appearances of identical words into one node. Furthermore, we propose a
diversified point network to generate a set of diverse keyphrases out of the
word graph in the decoding process. Experimental results on five benchmark data
sets show that our proposed method significantly outperforms the existing
state-of-the-art approaches.Comment: Accepted to SIGIR 201
Coherent Keyphrase Extraction via Web Mining
Keyphrases are useful for a variety of purposes, including summarizing,
indexing, labeling, categorizing, clustering, highlighting, browsing, and
searching. The task of automatic keyphrase extraction is to select keyphrases
from within the text of a given document. Automatic keyphrase extraction makes
it feasible to generate keyphrases for the huge number of documents that do not
have manually assigned keyphrases. A limitation of previous keyphrase
extraction algorithms is that the selected keyphrases are occasionally
incoherent. That is, the majority of the output keyphrases may fit together
well, but there may be a minority that appear to be outliers, with no clear
semantic relation to the majority or to each other. This paper presents
enhancements to the Kea keyphrase extraction algorithm that are designed to
increase the coherence of the extracted keyphrases. The approach is to use the
degree of statistical association among candidate keyphrases as evidence that
they may be semantically related. The statistical association is measured using
web mining. Experiments demonstrate that the enhancements improve the quality
of the extracted keyphrases. Furthermore, the enhancements are not
domain-specific: the algorithm generalizes well when it is trained on one
domain (computer science documents) and tested on another (physics documents).Comment: 6 pages, related work available at http://purl.org/peter.turney
Semi-Supervised Learning for Neural Keyphrase Generation
We study the problem of generating keyphrases that summarize the key points
for a given document. While sequence-to-sequence (seq2seq) models have achieved
remarkable performance on this task (Meng et al., 2017), model training often
relies on large amounts of labeled data, which is only applicable to
resource-rich domains. In this paper, we propose semi-supervised keyphrase
generation methods by leveraging both labeled data and large-scale unlabeled
samples for learning. Two strategies are proposed. First, unlabeled documents
are first tagged with synthetic keyphrases obtained from unsupervised keyphrase
extraction methods or a selflearning algorithm, and then combined with labeled
samples for training. Furthermore, we investigate a multi-task learning
framework to jointly learn to generate keyphrases as well as the titles of the
articles. Experimental results show that our semi-supervised learning-based
methods outperform a state-of-the-art model trained with labeled data only.Comment: To appear in EMNLP 2018 (12 pages, 7 figures, 6 tables
- …
