4,331,805 research outputs found
Free-Space Quantum Key Distribution
Based on the firm laws of physics rather than unproven foundations of
mathematical complexity, quantum cryptography provides a radically different
solution for encryption and promises unconditional security. Quantum
cryptography systems are typically built between two nodes connected to each
other through fiber optic. This chapter focuses on quantum cryptography systems
operating over free-space optical channels as a cost-effective and license-free
alternative to fiber optic counterparts. It provides an overview of the
different parts of an experimental free-space quantum communication link
developed in the Spanish National Research Council (Madrid, Spain).Comment: 22 pages, 15 figure
Free-space quantum key distribution
A working free-space quantum key distribution (QKD) system has been developed
and tested over a 205-m indoor optical path at Los Alamos National Laboratory
under fluorescent lighting conditions. Results show that free-space QKD can
provide secure real-time key distribution between parties who have a need to
communicate secretly.Comment: 5 pages, 2 figures, 2 tables. To be published in Physical review A on
or about 1 April 199
Practical free-space quantum key distribution over 1 km
A working free-space quantum key distribution (QKD) system has been developed
and tested over an outdoor optical path of ~1 km at Los Alamos National
Laboratory under nighttime conditions. Results show that QKD can provide secure
real-time key distribution between parties who have a need to communicate
secretly. Finally, we examine the feasibility of surface to satellite QKD.Comment: 5 pages, 2 figures, 2 tables. Submitted to Physics Review Letters,
May 199
Key technology issues for space robotic systems
Robotics has become a key technology consideration for the Space Station project to enable enhanced crew productivity and to maximize safety. There are many robotic functions currently being studied, including Space Station assembly, repair, and maintenance as well as satellite refurbishment, repair, and retrieval. Another area of concern is that of providing ground based experimenters with a natural interface that they might directly interact with their hardware onboard the Space Station or ancillary spacecraft. The state of the technology is such that the above functions are feasible; however, considerable development work is required for operation in this gravity-free vacuum environment. Furthermore, a program plan is evolving within NASA that will capitalize on recent government, university, and industrial robotics research and development (R and D) accomplishments. A brief summary is presented of the primary technology issues and physical examples are provided of the state of the technology for the initial operational capability (IOC) system as well as for the eventual final operational capability (FOC) Space Station
Free-space quantum key distribution by rotation-invariant twisted photons
Twisted photons are photons carrying a well-defined nonzero value of orbital
angular momentum (OAM). The associated optical wave exhibits a helical shape of
the wavefront (hence the name) and an optical vortex at the beam axis. The OAM
of light is attracting a growing interest for its potential in photonic
applications ranging from particle manipulation, microscopy and
nanotechnologies, to fundamental tests of quantum mechanics, classical data
multiplexing and quantum communication. Hitherto, however, all results obtained
with optical OAM were limited to laboratory scale. Here we report the
experimental demonstration of a link for free-space quantum communication with
OAM operating over a distance of 210 meters. Our method exploits OAM in
combination with optical polarization to encode the information in
rotation-invariant photonic states, so as to guarantee full independence of the
communication from the local reference frames of the transmitting and receiving
units. In particular, we implement quantum key distribution (QKD), a protocol
exploiting the features of quantum mechanics to guarantee unconditional
security in cryptographic communication, demonstrating error-rate performances
that are fully compatible with real-world application requirements. Our results
extend previous achievements of OAM-based quantum communication by over two
orders of magnitudes in the link scale, providing an important step forward in
achieving the vision of a worldwide quantum network
Geometry of Empty Space is the Key to Near-Arrest Dynamics
We study several examples of kinetically constrained lattice models using
dynamically accessible volume as an order parameter. Thereby we identify two
distinct regimes exhibiting dynamical slowing, with a sharp threshold between
them. These regimes are identified both by a new response function in
dynamically available volume, as well as directly in the dynamics. Results for
the selfdiffusion constant in terms of the connected hole density are
presented, and some evidence is given for scaling in the limit of dynamical
arrest.Comment: 11 page
Key issues in space nuclear power
The future appears rich in missions that will extend the frontiers of knowledge, human presence in space, and opportunities for profitable commerce. Key to the success of these ventures is the availability of plentiful, cost effective electric power and assured, low cost access to space. While forecasts of space power needs are problematic, an assessment of future needs based on terrestrial experience has been made. These needs fall into three broad categories: survival, self sufficiency, and industrialization. The cost of delivering payloads to orbital locations from LEO to Mars has been determined and future launch cost reductions projected. From these factors, then, projections of the performance necessary for future solar and nuclear space power options has been made. These goals are largely dependent upon orbital location and energy storage needs. Finally the cost of present space power systems has been determined and projections made for future systems
- …
