4,085 research outputs found

    RFID Key Establishment Against Active Adversaries

    Full text link
    We present a method to strengthen a very low cost solution for key agreement with a RFID device. Starting from a work which exploits the inherent noise on the communication link to establish a key by public discussion, we show how to protect this agreement against active adversaries. For that purpose, we unravel integrity (I)(I)-codes suggested by Cagalj et al. No preliminary key distribution is required.Comment: This work was presented at the First IEEE Workshop on Information Forensics and Security (WIFS'09) (update including minor remarks and references to match the presented version

    Denial-of-Service Resistance in Key Establishment

    Get PDF
    Denial of Service (DoS) attacks are an increasing problem for network connected systems. Key establishment protocols are applications that are particularly vulnerable to DoS attack as they are typically required to perform computationally expensive cryptographic operations in order to authenticate the protocol initiator and to generate the cryptographic keying material that will subsequently be used to secure the communications between initiator and responder. The goal of DoS resistance in key establishment protocols is to ensure that attackers cannot prevent a legitimate initiator and responder deriving cryptographic keys without expending resources beyond a responder-determined threshold. In this work we review the strategies and techniques used to improve resistance to DoS attacks. Three key establishment protocols implementing DoS resistance techniques are critically reviewed and the impact of misapplication of the techniques on DoS resistance is discussed. Recommendations on effectively applying resistance techniques to key establishment protocols are made

    Iterated LD-Problem in non-associative key establishment

    Full text link
    We construct new non-associative key establishment protocols for all left self-distributive (LD), multi-LD-, and mutual LD-systems. The hardness of these protocols relies on variations of the (simultaneous) iterated LD-problem and its generalizations. We discuss instantiations of these protocols using generalized shifted conjugacy in braid groups and their quotients, LD-conjugacy and ff-symmetric conjugacy in groups. We suggest parameter choices for instantiations in braid groups, symmetric groups and several matrix groups.Comment: 30 pages, 5 figures. arXiv admin note: substantial text overlap with arXiv:1305.440

    Cryptanalysis of three matrix-based key establishment protocols

    Get PDF
    We cryptanalyse a matrix-based key transport protocol due to Baumslag, Camps, Fine, Rosenberger and Xu from 2006. We also cryptanalyse two recently proposed matrix-based key agreement protocols, due to Habeeb, Kahrobaei and Shpilrain, and due to Romanczuk and Ustimenko.Comment: 9 page

    Efficient path key establishment for wireless sensor networks

    Get PDF
    Key predistribution schemes have been proposed as means to overcome wireless sensor network constraints such as limited communication and processing power. Two sensor nodes can establish a secure link with some probability based on the information stored in their memories, though it is not always possible that two sensor nodes may set up a secure link. In this paper, we propose a new approach that elects trusted common nodes called “Proxies” which reside on an existing secure path linking two sensor nodes. These sensor nodes are used to send the generated key which will be divided into parts (nuggets) according to the number of elected proxies. Our approach has been assessed against previously developed algorithms, and the results show that our algorithm discovers proxies more quickly which are closer to both end nodes, thus producing shorter path lengths. We have also assessed the impact of our algorithm on the average time to establish a secure link when the transmitter and receiver of the sensor nodes are “ON.” The results show the superiority of our algorithm in this regard. Overall, the proposed algorithm is well suited for wireless sensor networks
    corecore