1,633 research outputs found

    From Global to Local: Multi-scale Out-of-distribution Detection

    Full text link
    Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process. Recent progress in representation learning gives rise to distance-based OOD detection that recognizes inputs as ID/OOD according to their relative distances to the training data of ID classes. Previous approaches calculate pairwise distances relying only on global image representations, which can be sub-optimal as the inevitable background clutter and intra-class variation may drive image-level representations from the same ID class far apart in a given representation space. In this work, we overcome this challenge by proposing Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details of images to maximally benefit OOD detection. Specifically, we first find that existing models pretrained by off-the-shelf cross-entropy or contrastive losses are incompetent to capture valuable local representations for MODE, due to the scale-discrepancy between the ID training and OOD detection processes. To mitigate this issue and encourage locally discriminative representations in ID training, we propose Attention-based Local PropAgation (ALPA), a trainable objective that exploits a cross-attention mechanism to align and highlight the local regions of the target objects for pairwise examples. During test-time OOD detection, a Cross-Scale Decision (CSD) function is further devised on the most discriminative multi-scale representations to distinguish ID/OOD data more faithfully. We demonstrate the effectiveness and flexibility of MODE on several benchmarks -- on average, MODE outperforms the previous state-of-the-art by up to 19.24% in FPR, 2.77% in AUROC. Code is available at https://github.com/JimZAI/MODE-OOD.Comment: 13 page

    BoWFire: Detection of Fire in Still Images by Integrating Pixel Color and Texture Analysis

    Get PDF
    Emergency events involving fire are potentially harmful, demanding a fast and precise decision making. The use of crowdsourcing image and videos on crisis management systems can aid in these situations by providing more information than verbal/textual descriptions. Due to the usual high volume of data, automatic solutions need to discard non-relevant content without losing relevant information. There are several methods for fire detection on video using color-based models. However, they are not adequate for still image processing, because they can suffer on high false-positive results. These methods also suffer from parameters with little physical meaning, which makes fine tuning a difficult task. In this context, we propose a novel fire detection method for still images that uses classification based on color features combined with texture classification on superpixel regions. Our method uses a reduced number of parameters if compared to previous works, easing the process of fine tuning the method. Results show the effectiveness of our method of reducing false-positives while its precision remains compatible with the state-of-the-art methods.Comment: 8 pages, Proceedings of the 28th SIBGRAPI Conference on Graphics, Patterns and Images, IEEE Pres
    • …
    corecore