3,169 research outputs found

    Neural Nearest Neighbors Networks

    Full text link
    Non-local methods exploiting the self-similarity of natural signals have been well studied, for example in image analysis and restoration. Existing approaches, however, rely on k-nearest neighbors (KNN) matching in a fixed feature space. The main hurdle in optimizing this feature space w.r.t. application performance is the non-differentiability of the KNN selection rule. To overcome this, we propose a continuous deterministic relaxation of KNN selection that maintains differentiability w.r.t. pairwise distances, but retains the original KNN as the limit of a temperature parameter approaching zero. To exploit our relaxation, we propose the neural nearest neighbors block (N3 block), a novel non-local processing layer that leverages the principle of self-similarity and can be used as building block in modern neural network architectures. We show its effectiveness for the set reasoning task of correspondence classification as well as for image restoration, including image denoising and single image super-resolution, where we outperform strong convolutional neural network (CNN) baselines and recent non-local models that rely on KNN selection in hand-chosen features spaces.Comment: to appear at NIPS*2018, code available at https://github.com/visinf/n3net

    Prototypical Contrastive Learning of Unsupervised Representations

    Full text link
    This paper presents Prototypical Contrastive Learning (PCL), an unsupervised representation learning method that addresses the fundamental limitations of instance-wise contrastive learning. PCL not only learns low-level features for the task of instance discrimination, but more importantly, it implicitly encodes semantic structures of the data into the learned embedding space. Specifically, we introduce prototypes as latent variables to help find the maximum-likelihood estimation of the network parameters in an Expectation-Maximization framework. We iteratively perform E-step as finding the distribution of prototypes via clustering and M-step as optimizing the network via contrastive learning. We propose ProtoNCE loss, a generalized version of the InfoNCE loss for contrastive learning, which encourages representations to be closer to their assigned prototypes. PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks with substantial improvement in low-resource transfer learning. Code and pretrained models are available at https://github.com/salesforce/PCL

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    CleanNet: Transfer Learning for Scalable Image Classifier Training with Label Noise

    Full text link
    In this paper, we study the problem of learning image classification models with label noise. Existing approaches depending on human supervision are generally not scalable as manually identifying correct or incorrect labels is time-consuming, whereas approaches not relying on human supervision are scalable but less effective. To reduce the amount of human supervision for label noise cleaning, we introduce CleanNet, a joint neural embedding network, which only requires a fraction of the classes being manually verified to provide the knowledge of label noise that can be transferred to other classes. We further integrate CleanNet and conventional convolutional neural network classifier into one framework for image classification learning. We demonstrate the effectiveness of the proposed algorithm on both of the label noise detection task and the image classification on noisy data task on several large-scale datasets. Experimental results show that CleanNet can reduce label noise detection error rate on held-out classes where no human supervision available by 41.5% compared to current weakly supervised methods. It also achieves 47% of the performance gain of verifying all images with only 3.2% images verified on an image classification task. Source code and dataset will be available at kuanghuei.github.io/CleanNetProject.Comment: Accepted to CVPR 201
    • …
    corecore