65,583 research outputs found
Collaborative Spectrum Sensing from Sparse Observations in Cognitive Radio Networks
Spectrum sensing, which aims at detecting spectrum holes, is the precondition
for the implementation of cognitive radio (CR). Collaborative spectrum sensing
among the cognitive radio nodes is expected to improve the ability of checking
complete spectrum usage. Due to hardware limitations, each cognitive radio node
can only sense a relatively narrow band of radio spectrum. Consequently, the
available channel sensing information is far from being sufficient for
precisely recognizing the wide range of unoccupied channels. Aiming at breaking
this bottleneck, we propose to apply matrix completion and joint sparsity
recovery to reduce sensing and transmitting requirements and improve sensing
results. Specifically, equipped with a frequency selective filter, each
cognitive radio node senses linear combinations of multiple channel information
and reports them to the fusion center, where occupied channels are then decoded
from the reports by using novel matrix completion and joint sparsity recovery
algorithms. As a result, the number of reports sent from the CRs to the fusion
center is significantly reduced. We propose two decoding approaches, one based
on matrix completion and the other based on joint sparsity recovery, both of
which allow exact recovery from incomplete reports. The numerical results
validate the effectiveness and robustness of our approaches. In particular, in
small-scale networks, the matrix completion approach achieves exact channel
detection with a number of samples no more than 50% of the number of channels
in the network, while joint sparsity recovery achieves similar performance in
large-scale networks.Comment: 12 pages, 11 figure
Joint Sparsity with Different Measurement Matrices
We consider a generalization of the multiple measurement vector (MMV)
problem, where the measurement matrices are allowed to differ across
measurements. This problem arises naturally when multiple measurements are
taken over time, e.g., and the measurement modality (matrix) is time-varying.
We derive probabilistic recovery guarantees showing that---under certain (mild)
conditions on the measurement matrices---l2/l1-norm minimization and a variant
of orthogonal matching pursuit fail with a probability that decays
exponentially in the number of measurements. This allows us to conclude that,
perhaps surprisingly, recovery performance does not suffer from the individual
measurements being taken through different measurement matrices. What is more,
recovery performance typically benefits (significantly) from diversity in the
measurement matrices; we specify conditions under which such improvements are
obtained. These results continue to hold when the measurements are subject to
(bounded) noise.Comment: Allerton 201
Joint Sparsity Recovery for Spectral Compressed Sensing
Compressed Sensing (CS) is an effective approach to reduce the required
number of samples for reconstructing a sparse signal in an a priori basis, but
may suffer severely from the issue of basis mismatch. In this paper we study
the problem of simultaneously recovering multiple spectrally-sparse signals
that are supported on the same frequencies lying arbitrarily on the unit
circle. We propose an atomic norm minimization problem, which can be regarded
as a continuous counterpart of the discrete CS formulation and be solved
efficiently via semidefinite programming. Through numerical experiments, we
show that the number of samples per signal may be further reduced by harnessing
the joint sparsity pattern of multiple signals
Distributed Compressive CSIT Estimation and Feedback for FDD Multi-user Massive MIMO Systems
To fully utilize the spatial multiplexing gains or array gains of massive
MIMO, the channel state information must be obtained at the transmitter side
(CSIT). However, conventional CSIT estimation approaches are not suitable for
FDD massive MIMO systems because of the overwhelming training and feedback
overhead. In this paper, we consider multi-user massive MIMO systems and deploy
the compressive sensing (CS) technique to reduce the training as well as the
feedback overhead in the CSIT estimation. The multi-user massive MIMO systems
exhibits a hidden joint sparsity structure in the user channel matrices due to
the shared local scatterers in the physical propagation environment. As such,
instead of naively applying the conventional CS to the CSIT estimation, we
propose a distributed compressive CSIT estimation scheme so that the compressed
measurements are observed at the users locally, while the CSIT recovery is
performed at the base station jointly. A joint orthogonal matching pursuit
recovery algorithm is proposed to perform the CSIT recovery, with the
capability of exploiting the hidden joint sparsity in the user channel
matrices. We analyze the obtained CSIT quality in terms of the normalized mean
absolute error, and through the closed-form expressions, we obtain simple
insights into how the joint channel sparsity can be exploited to improve the
CSIT recovery performance.Comment: 16 double-column pages, accepted for publication in IEEE Transactions
on Signal Processin
Joint space aspect reconstruction of wide-angle SAR exploiting sparsity
In this paper we present an algorithm for wide-angle synthetic aperture radar (SAR) image formation. Reconstruction of wide-angle SAR holds a promise of higher resolution and better information about a scene, but it also poses a number of challenges when compared to the traditional narrow-angle SAR. Most prominently, the isotropic point scattering model is no longer valid. We present an algorithm capable of producing high resolution reflectivity maps in both space and aspect, thus accounting for the anisotropic scattering behavior of targets. We pose the problem as a non-parametric three-dimensional inversion problem, with two constraints: magnitudes of the backscattered power are highly correlated across closely spaced look angles and the backscattered power
originates from a small set of point scatterers. This approach considers jointly all scatterers in the scene across all azimuths, and exploits the sparsity of the underlying scattering field. We implement the algorithm and present
reconstruction results on realistic data obtained from the XPatch Backhoe dataset
- …
