527,954 research outputs found
Minimum switching network for generating the weight of a binary vector
Vector is divided into three variable sections, and each section is processed by unary-to-binary decoder or adder. Resulting network performs on iterative collection process; all outputs of same kind are collected in same manner. In combination with simple comparator gates, weighting network can also be used as majority network
DeepOtsu: Document Enhancement and Binarization using Iterative Deep Learning
This paper presents a novel iterative deep learning framework and apply it
for document enhancement and binarization. Unlike the traditional methods which
predict the binary label of each pixel on the input image, we train the neural
network to learn the degradations in document images and produce the uniform
images of the degraded input images, which allows the network to refine the
output iteratively. Two different iterative methods have been studied in this
paper: recurrent refinement (RR) which uses the same trained neural network in
each iteration for document enhancement and stacked refinement (SR) which uses
a stack of different neural networks for iterative output refinement. Given the
learned uniform and enhanced image, the binarization map can be easy to obtain
by a global or local threshold. The experimental results on several public
benchmark data sets show that our proposed methods provide a new clean version
of the degraded image which is suitable for visualization and promising results
of binarization using the global Otsu's threshold based on the enhanced images
learned iteratively by the neural network.Comment: Accepted by Pattern Recognitio
A domain decomposing parallel sparse linear system solver
The solution of large sparse linear systems is often the most time-consuming
part of many science and engineering applications. Computational fluid
dynamics, circuit simulation, power network analysis, and material science are
just a few examples of the application areas in which large sparse linear
systems need to be solved effectively. In this paper we introduce a new
parallel hybrid sparse linear system solver for distributed memory
architectures that contains both direct and iterative components. We show that
by using our solver one can alleviate the drawbacks of direct and iterative
solvers, achieving better scalability than with direct solvers and more
robustness than with classical preconditioned iterative solvers. Comparisons to
well-known direct and iterative solvers on a parallel architecture are
provided.Comment: To appear in Journal of Computational and Applied Mathematic
- …
