346,072 research outputs found

    Evidence for O-atom exchange in the O(^1D) + N_2O reaction as the source of mass-independent isotopic fractionation in atmospheric N_2O

    Get PDF
    Recent experiments have shown that in the oxygen isotopic exchange reaction for O(^1D) + CO_2 the elastic channel is approximately 50% that of the inelastic channel [Perri et al., 2003]. We propose an analogous oxygen atom exchange reaction for the isoelectronic O(^1D) + N_2O system to explain the mass-independent isotopic fractionation (MIF) in atmospheric N_2O. We apply quantum chemical methods to compute the energetics of the potential energy surfaces on which the O(^1D) + N_2O reaction occurs. Preliminary modeling results indicate that oxygen isotopic exchange via O(^1D) + N_2O can account for the MIF oxygen anomaly if the oxygen atom isotopic exchange rate is 30–50% that of the total rate for the reactive channels

    Isotopic algebras with non-isomorphic congruence lattices

    Full text link
    We give examples of pairs of isotopic algebras with non-isomorphic congruence lattices. This answers the question of whether all isotopic algebras have isomorphic congruence lattices.Comment: 3 pages; comments welcom

    Isotopic effects on the thermal conductivity of graphene nanoribbons: localization mechanism

    Full text link
    Thermal conductivity of graphene nanoribbons (GNR) with length 106~{\AA} and width 4.92~{\AA} after isotopic doping is investigated by molecular dynamics with quantum correction. Two interesting phenomena are found: (1) isotopic doping reduces thermal conductivity effectively in low doping region, and the reduction slows down in high doping region; (2) thermal conductivity increases with increasing temperature in both pure and doped GNR; but the increasing behavior is much more slowly in the doped GNR than that in pure ones. Further studies reveal that the physics of these two phenomena is related to the localized phonon modes, whose number increases quickly (slowly) with increasing isotopic doping in low (high) isotopic doping region.Comment: 6 fig

    Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations

    Get PDF
    The goal of this study is to determine how H_2O and HDO measurements in water vapor can be used to detect and diagnose biases in the representation of processes controlling tropospheric humidity in atmospheric general circulation models (GCMs). We analyze a large number of isotopic data sets (four satellite, sixteen ground-based remote-sensing, five surface in situ and three aircraft data sets) that are sensitive to different altitudes throughout the free troposphere. Despite significant differences between data sets, we identify some observed HDO/H_2O characteristics that are robust across data sets and that can be used to evaluate models. We evaluate the isotopic GCM LMDZ, accounting for the effects of spatiotemporal sampling and instrument sensitivity. We find that LMDZ reproduces the spatial patterns in the lower and mid troposphere remarkably well. However, it underestimates the amplitude of seasonal variations in isotopic composition at all levels in the subtropics and in midlatitudes, and this bias is consistent across all data sets. LMDZ also underestimates the observed meridional isotopic gradient and the contrast between dry and convective tropical regions compared to satellite data sets. Comparison with six other isotope-enabled GCMs from the SWING2 project shows that biases exhibited by LMDZ are common to all models. The SWING2 GCMs show a very large spread in isotopic behavior that is not obviously related to that of humidity, suggesting water vapor isotopic measurements could be used to expose model shortcomings. In a companion paper, the isotopic differences between models are interpreted in terms of biases in the representation of processes controlling humidity

    Isotopic distribution of fission fragments in collisions between 238U beam and 9Be and 12C targets at 24 MeV/u

    Full text link
    Inverse kinematics coupled to a high-resolution spectrometer is used to investigate the isotopic yields of fission fragments produced in reactions between a 238U beam at 24 MeV/u and 9Be and 12C targets. Mass, atomic number and isotopic distributions are reported for the two reactions. These informations give access to the neutron excess and the isotopic distribution widths, which together with the atomic-number and mass distributions are used to investigate the fusion-fission dynamics.Comment: Submitted to PR

    Isotopic niche variability in macroconsumers of the East Scotia Ridge (Southern Ocean) hydrothermal vents: What more can we learn from an ellipse?

    Get PDF
    Aspects of between-individual trophic niche width can be explored through the isotopic niche concept. In many cases isotopic variability can be influenced by the scale of sampling and biological characteristics including body size or sex. Sample size-corrected (SEAc) and Bayesian (SEAb) standard ellipse areas and generalised least squares (GLS) models were used to explore the spatial variability of δ13C and δ15N in Kiwa tyleri (decapod), Gigantopelta chessoia (peltospirid gastropod) and Vulcanolepas scotiaensis (stalked barnacle) collected from 3 hydrothermal vent field sites (E2, E9N and E9S) on the East Scotia Ridge (ESR), Southern Ocean. SEAb only revealed spatial differences in isotopic niche area in male K. tyleri. However, the parameters used to draw the SEAc, eccentricity (E) and angle of the major SEAc axis to the x-axis (θ), indicated spatial differences in the relationships between δ13C and δ15N in all 3 species. The GLS models indicated that there were spatial differences in isotope-length trends, which were related to E and θ of the SEAc. This indicated that E and θ were potentially driven by underlying trophic and biological processes that varied with body size. Examination of the isotopic niches using standard ellipse areas and their parameters in conjunction with length-based analyses provided a means by which a proportion of the isotopic variability within each species could be described. We suggest that the parameters E and θ offer additional ecological insight that has so far been overlooked in isotopic niche studies

    Knotted surfaces in 4-manifolds and stabilizations

    Full text link
    In this paper, we study stable equivalence of exotically knotted surfaces in 4-manifolds, surfaces that are topologically isotopic but not smoothly isotopic. We prove that any pair of embedded surfaces in the same homology class become smoothly isotopic after stabilizing them by handle additions in the ambient 4-manifold, which can moreover assumed to be attached in a standard way (locally and unknottedly) in many favorable situations. In particular, any exotically knotted pair of surfaces with cyclic fundamental group complements become smoothly isotopic after a same number of standard stabilizations - analogous to C.T.C. Wall's celebrated result on the stable equivalence of simply-connected 4-manifolds. We moreover show that all constructions of exotic knottings of surfaces we are aware of, which display a good variety of techniques and ideas, produce surfaces that become smoothly isotopic after a single stabilization.Comment: 19 pages, 12 figure
    corecore