9,119 research outputs found
Automation of isogeometric formulation and efficiency consideration
This paper deals with automation of the isogeometric finite element formulation. Isogeometric finite element is implemented in AceGen environment, which enables symbolic formulation of the element code and the expressions are automatically opti- mized. The automated code is tested for objectivity regarding numerical efficiency in a numeric test with the Cooke membrane. This test shows that automatic code generation optimizes the isogeometric quadrilateral element with linear Bezier splines to the degree of only twelve percent overhead against standard displacement quadrilateral element of four nodes. Additionaly, the automated isogeometric element code is tested on a set of standard benchmark test cases to further test the accurancy and efficiency of the pre- sented isogeometric implementation. The isogeometric displacement brick element with quadratic Bezier splines is in all tests compared to a collection of standard displacement element formulations and a
selection of EAS elements. The presented results show su- perior behaviour of the isogeometric displacement brick element with quadratic Bezier splines for coarse meshes and best convergence rate with mesh refinement in most test cases. Despite all optimization of the element code the biggest disadvantage of the isogeo- metric model remains the time cost of the isogeometric analysis. Thus, when considering the ratio between solution error and solution time, the use of stable EAS elements, likeTSCG12, remains preferable
Isogeometric Analysis and Harmonic Stator-Rotor Coupling for Simulating Electric Machines
This work proposes Isogeometric Analysis as an alternative to classical
finite elements for simulating electric machines. Through the spline-based
Isogeometric discretization it is possible to parametrize the circular arcs
exactly, thereby avoiding any geometrical error in the representation of the
air gap where a high accuracy is mandatory. To increase the generality of the
method, and to allow rotation, the rotor and the stator computational domains
are constructed independently as multipatch entities. The two subdomains are
then coupled using harmonic basis functions at the interface which gives rise
to a saddle-point problem. The properties of Isogeometric Analysis combined
with harmonic stator-rotor coupling are presented. The results and performance
of the new approach are compared to the ones for a classical finite element
method using a permanent magnet synchronous machine as an example
Matrix-free weighted quadrature for a computationally efficient isogeometric -method
The -method is the isogeometric method based on splines (or NURBS, etc.)
with maximum regularity. When implemented following the paradigms of classical
finite element methods, the computational resources required by the method
are prohibitive even for moderate degree. In order to address this issue, we
propose a matrix-free strategy combined with weighted quadrature, which is an
ad-hoc strategy to compute the integrals of the Galerkin system. Matrix-free
weighted quadrature (MF-WQ) speeds up matrix operations, and, perhaps even more
important, greatly reduces memory consumption. Our strategy also requires an
efficient preconditioner for the linear system iterative solver. In this work
we deal with an elliptic model problem, and adopt a preconditioner based on the
Fast Diagonalization method, an old idea to solve Sylvester-like equations. Our
numerical tests show that the isogeometric solver based on MF-WQ is faster than
standard approaches (where the main cost is the matrix formation by standard
Gaussian quadrature) even for low degree. But the main achievement is that,
with MF-WQ, the -method gets orders of magnitude faster by increasing the
degree, given a target accuracy. Therefore, we are able to show the
superiority, in terms of computational efficiency, of the high-degree
-method with respect to low-degree isogeometric discretizations. What we
present here is applicable to more complex and realistic differential problems,
but its effectiveness will depend on the preconditioner stage, which is as
always problem-dependent. This situation is typical of modern high-order
methods: the overall performance is mainly related to the quality of the
preconditioner
Unstructured spline spaces for isogeometric analysis based on spline manifolds
Based on spline manifolds we introduce and study a mathematical framework for
analysis-suitable unstructured B-spline spaces. In this setting the parameter
domain has a manifold structure, which allows for the definition of function
spaces that have a tensor-product structure locally, but not globally. This
includes configurations such as B-splines over multi-patch domains with
extraordinary points, analysis-suitable unstructured T-splines, or more general
constructions. Within this framework, we generalize the concept of
dual-compatible B-splines, which was originally developed for structured
T-splines. This allows us to prove the key properties that are needed for
isogeometric analysis, such as linear independence and optimal approximation
properties for -refined meshes
Construction of analysis-suitable planar multi-patch parameterizations
Isogeometric analysis allows to define shape functions of global
continuity (or of higher continuity) over multi-patch geometries. The
construction of such -smooth isogeometric functions is a non-trivial
task and requires particular multi-patch parameterizations, so-called
analysis-suitable (in short, AS-) parameterizations, to ensure
that the resulting isogeometric spaces possess optimal approximation
properties, cf. [7]. In this work, we show through examples that it is possible
to construct AS- multi-patch parameterizations of planar domains, given
their boundary. More precisely, given a generic multi-patch geometry, we
generate an AS- multi-patch parameterization possessing the same
boundary, the same vertices and the same first derivatives at the vertices, and
which is as close as possible to this initial geometry. Our algorithm is based
on a quadratic optimization problem with linear side constraints. Numerical
tests also confirm that isogeometric spaces over AS- multi-patch
parameterized domains converge optimally under mesh refinement, while for
generic parameterizations the convergence order is severely reduced
A simple approach to the numerical simulation with trimmed CAD surfaces
In this work a novel method for the analysis with trimmed CAD surfaces is
presented. The method involves an additional mapping step and the attraction
stems from its sim- plicity and ease of implementation into existing Finite
Element (FEM) or Boundary Element (BEM) software. The method is first verified
with classical test examples in structural mechanics. Then two practical
applications are presented one using the FEM, the other the BEM, that show the
applicability of the method.Comment: 20 pages and 16 figure
- …
