9,119 research outputs found

    Automation of isogeometric formulation and efficiency consideration

    Get PDF
    This paper deals with automation of the isogeometric finite element formulation. Isogeometric finite element is implemented in AceGen environment, which enables symbolic formulation of the element code and the expressions are automatically opti- mized. The automated code is tested for objectivity regarding numerical efficiency in a numeric test with the Cooke membrane. This test shows that automatic code generation optimizes the isogeometric quadrilateral element with linear Bezier splines to the degree of only twelve percent overhead against standard displacement quadrilateral element of four nodes. Additionaly, the automated isogeometric element code is tested on a set of standard benchmark test cases to further test the accurancy and efficiency of the pre- sented isogeometric implementation. The isogeometric displacement brick element with quadratic Bezier splines is in all tests compared to a collection of standard displacement element formulations and a selection of EAS elements. The presented results show su- perior behaviour of the isogeometric displacement brick element with quadratic Bezier splines for coarse meshes and best convergence rate with mesh refinement in most test cases. Despite all optimization of the element code the biggest disadvantage of the isogeo- metric model remains the time cost of the isogeometric analysis. Thus, when considering the ratio between solution error and solution time, the use of stable EAS elements, likeTSCG12, remains preferable

    Isogeometric Analysis and Harmonic Stator-Rotor Coupling for Simulating Electric Machines

    Full text link
    This work proposes Isogeometric Analysis as an alternative to classical finite elements for simulating electric machines. Through the spline-based Isogeometric discretization it is possible to parametrize the circular arcs exactly, thereby avoiding any geometrical error in the representation of the air gap where a high accuracy is mandatory. To increase the generality of the method, and to allow rotation, the rotor and the stator computational domains are constructed independently as multipatch entities. The two subdomains are then coupled using harmonic basis functions at the interface which gives rise to a saddle-point problem. The properties of Isogeometric Analysis combined with harmonic stator-rotor coupling are presented. The results and performance of the new approach are compared to the ones for a classical finite element method using a permanent magnet synchronous machine as an example

    Matrix-free weighted quadrature for a computationally efficient isogeometric kk-method

    Full text link
    The kk-method is the isogeometric method based on splines (or NURBS, etc.) with maximum regularity. When implemented following the paradigms of classical finite element methods, the computational resources required by the kk-method are prohibitive even for moderate degree. In order to address this issue, we propose a matrix-free strategy combined with weighted quadrature, which is an ad-hoc strategy to compute the integrals of the Galerkin system. Matrix-free weighted quadrature (MF-WQ) speeds up matrix operations, and, perhaps even more important, greatly reduces memory consumption. Our strategy also requires an efficient preconditioner for the linear system iterative solver. In this work we deal with an elliptic model problem, and adopt a preconditioner based on the Fast Diagonalization method, an old idea to solve Sylvester-like equations. Our numerical tests show that the isogeometric solver based on MF-WQ is faster than standard approaches (where the main cost is the matrix formation by standard Gaussian quadrature) even for low degree. But the main achievement is that, with MF-WQ, the kk-method gets orders of magnitude faster by increasing the degree, given a target accuracy. Therefore, we are able to show the superiority, in terms of computational efficiency, of the high-degree kk-method with respect to low-degree isogeometric discretizations. What we present here is applicable to more complex and realistic differential problems, but its effectiveness will depend on the preconditioner stage, which is as always problem-dependent. This situation is typical of modern high-order methods: the overall performance is mainly related to the quality of the preconditioner

    Unstructured spline spaces for isogeometric analysis based on spline manifolds

    Full text link
    Based on spline manifolds we introduce and study a mathematical framework for analysis-suitable unstructured B-spline spaces. In this setting the parameter domain has a manifold structure, which allows for the definition of function spaces that have a tensor-product structure locally, but not globally. This includes configurations such as B-splines over multi-patch domains with extraordinary points, analysis-suitable unstructured T-splines, or more general constructions. Within this framework, we generalize the concept of dual-compatible B-splines, which was originally developed for structured T-splines. This allows us to prove the key properties that are needed for isogeometric analysis, such as linear independence and optimal approximation properties for hh-refined meshes

    Construction of analysis-suitable G1G^1 planar multi-patch parameterizations

    Full text link
    Isogeometric analysis allows to define shape functions of global C1C^{1} continuity (or of higher continuity) over multi-patch geometries. The construction of such C1C^{1}-smooth isogeometric functions is a non-trivial task and requires particular multi-patch parameterizations, so-called analysis-suitable G1G^{1} (in short, AS-G1G^{1}) parameterizations, to ensure that the resulting C1C^{1} isogeometric spaces possess optimal approximation properties, cf. [7]. In this work, we show through examples that it is possible to construct AS-G1G^{1} multi-patch parameterizations of planar domains, given their boundary. More precisely, given a generic multi-patch geometry, we generate an AS-G1G^{1} multi-patch parameterization possessing the same boundary, the same vertices and the same first derivatives at the vertices, and which is as close as possible to this initial geometry. Our algorithm is based on a quadratic optimization problem with linear side constraints. Numerical tests also confirm that C1C^{1} isogeometric spaces over AS-G1G^{1} multi-patch parameterized domains converge optimally under mesh refinement, while for generic parameterizations the convergence order is severely reduced

    A simple approach to the numerical simulation with trimmed CAD surfaces

    Full text link
    In this work a novel method for the analysis with trimmed CAD surfaces is presented. The method involves an additional mapping step and the attraction stems from its sim- plicity and ease of implementation into existing Finite Element (FEM) or Boundary Element (BEM) software. The method is first verified with classical test examples in structural mechanics. Then two practical applications are presented one using the FEM, the other the BEM, that show the applicability of the method.Comment: 20 pages and 16 figure
    corecore