223,440 research outputs found

    Ionization by bulk heating of electrons in capacitive radio frequency atmospheric pressure microplasmas

    Full text link
    Electron heating and ionization dynamics in capacitively coupled radio frequency (RF) atmospheric pressure microplasmas operated in helium are investigated by Particle in Cell simulations and semi-analytical modeling. A strong heating of electrons and ionization in the plasma bulk due to high bulk electric fields are observed at distinct times within the RF period. Based on the model the electric field is identified to be a drift field caused by a low electrical conductivity due to the high electron-neutral collision frequency at atmospheric pressure. Thus, the ionization is mainly caused by ohmic heating in this "Omega-mode". The phase of strongest bulk electric field and ionization is affected by the driving voltage amplitude. At high amplitudes, the plasma density is high, so that the sheath impedance is comparable to the bulk resistance. Thus, voltage and current are about 45{\deg} out of phase and maximum ionization is observed during sheath expansion with local maxima at the sheath edges. At low driving voltages, the plasma density is low and the discharge becomes more resistive resulting in a smaller phase shift of about 4{\deg}. Thus, maximum ionization occurs later within the RF period with a maximum in the discharge center. Significant analogies to electronegative low pressure macroscopic discharges operated in the Drift-Ambipolar mode are found, where similar mechanisms induced by a high electronegativity instead of a high collision frequency have been identified

    Impact ionization fronts in Si diodes: Numerical evidence of superfast propagation due to nonlocalized preionization

    Full text link
    We present numerical evidence of a novel propagation mode for superfast impact ionization fronts in high-voltage Si p+p^+-nn-n+n^+ structures. In nonlinear dynamics terms, this mode corresponds to a pulled front propagating into an unstable state in the regime of nonlocalized initial conditions. Before the front starts to travel, field-ehanced emission of electrons from deep-level impurities preionizes initially depleted nn base creating spatially nonuniform free carriers profile. Impact ionization takes place in the whole high-field region. We find two ionizing fronts that propagate in opposite directions with velocities up to 10 times higher than the saturated drift velocity.Comment: 3 pages, 4 figure

    Characterization of photomultiplier tubes in a novel operation mode for Secondary Emission Ionization Calorimetry

    Full text link
    Hamamatsu single anode R7761 and multi-anode R5900-00-M16 Photomultiplier Tubes have been characterized for use in a Secondary Emission (SE) Ionization Calorimetry study. SE Ionization Calorimetry is a novel technique to measure electromagnetic shower particles in extreme radiation environments. The different operation modes used in these tests were developed by modifying the conventional PMT bias circuit. These modifications were simple changes to the arrangement of the voltage dividers of the baseboard circuits. The PMTs with modified bases, referred to as operating in SE mode, are used as an SE detector module in an SE calorimeter prototype, and placed between absorber materials (Fe, Cu, Pb, W, etc.). Here, the technical design of different operation modes, as well as the characterization measurements of both SE modes and the conventional PMT mode are reported

    Pathways to double ionization of atoms in strong fields

    Full text link
    We discuss the final stages of double ionization of atoms in a strong linearly polarized laser field within a classical model. We propose that all trajectories leading to non-sequential double ionization pass close to a saddle in phase space which we identify and characterize. The saddle lies in a two degree of freedom subspace of symmetrically escaping electrons. The distribution of longitudinal momenta of ions as calculated within the subspace shows the double hump structure observed in experiments. Including a symmetric bending mode of the electrons allows us to reproduce the transverse ion momenta. We discuss also a path to sequential ionization and show that it does not lead to the observed momentum distributions.Comment: 10 pages, 10 figures; fig.6 and 7 exchanged in the final version accepted for publication in Phys. Rev.

    Magnetic ionization fronts II: Jump conditions for oblique magnetization

    Full text link
    We present the jump conditions for ionization fronts with oblique magnetic fields. The standard nomenclature of R- and D-type fronts can still be applied, but in the case of oblique magnetization there are fronts of each type about each of the fast- and slow-mode speeds. As an ionization front slows, it will drive first a fast- and then a slow-mode shock into the surrounding medium. Even for rather weak upstream magnetic fields, the effect of magnetization on ionization front evolution can be important. [Includes numerical MHD models and an application to observations of S106.]Comment: 9 pages, 10 figures, Latex, to be published in MNRA

    Application of a magnetic mass spectrometer to ionization studies in impure shock-heated argon

    Get PDF
    A study of the unique role of impurities in the initial stages of ionization relaxation in shock-heated argon, using a sampling mass spectrometer to determine the ionic products of the reaction, is described. The ions are extracted from the shock tube through a small orifice in the end wall after they have diffused through the dense thermal layer adjacent to the wall from the ionizing gas behind the reflected shock wave. The ion diffusion is analysed in detail to assess the possibility that the sampling process alters the reaction products. It is shown that this is unlikely because the impurities are in dilute concentration and the reaction is studied in its initial stages. This mode of sampling is compared with others. The experiments were conducted in argon at temperature of 16,600 °K and pressure of 16 mmHg with an estimated impurity level of 300 parts per million. A surprisingly large number of different ions were detected during the initial stages of ionization. O+ and H+ were found in much greater amounts than any of the other products, each being about five times more abundant than A+. The results suggest that H2O is probably quite generally the most important impurity in thermal-ionization experiments, and that ionization ‘incubation’ is due to dissociation of molecular impurities (especially H2O) before ionization commences. Possible explanations of the well-known efficiency of small amounts of impurities in initiating ionization are discussed

    Different escape modes in two-photon double ionization of helium

    Get PDF
    The quadrupole channel of two-photon double ionization of He exhibits two distinctly different modes of correlated motion of the photoelectron pair. The mode associated with the center-of-mass motion favors a large total momentum which is maximazed at a parallel emission. However, the mode associated with the relative motion favors an antiparallel emission. This difference is manifested in a profoundly different width of the angular correlation functions corresponding to the center-of-mass and relative motion modes.Comment: 4 pages, 3 figure

    Non-WKB Models of the FIP Effect: The Role of Slow Mode Waves

    Full text link
    A model for element abundance fractionation between the solar chromosphere and corona is further developed. The ponderomotive force due to Alfven waves propagating through, or reflecting from the chromosphere in solar conditions generally accelerates chromospheric ions, but not neutrals, into the corona. This gives rise to what has become known as the First Ionization Potential (FIP) Effect. We incorporate new physical processes into the model. The chromospheric ionization balance is improved, and the effect of different approximations is discussed. We also treat the parametric generation of slow mode waves by the parallel propagating Alfven waves. This is also an effect of the ponderomotive force, arising from the periodic variation of the magnetic pressure driving an acoustic mode, which adds to the background longitudinal pressure. This can have subtle effects on the fractionation, rendering it quasi-mass independent in the lower regions of the chromosphere. We also briefly discuss the change in the fractionation with Alfven wave frequency, relative to the frequency of the overlying coronal loop resonance.Comment: 32 pages, 8 figures, accepted by Ap
    corecore