1,169 research outputs found
Charge-Transfer Excitations in One-Dimensional Dimerized Mott Insulators
We investigate the optical properties of one-dimensional (1D) dimerized Mott
insulators using the 1D dimerized extended Hubbard model. Numerical
calculations and a perturbative analysis from the decoupled-dimer limit clarify
that there are three relevant classes of charge-transfer (CT) states generated
by photoexcitation: interdimer CT unbound states, interdimer CT exciton states,
and intradimer CT exciton states. This classification is applied to
understanding the optical properties of an organic molecular material,
1,3,5-trithia-2,4,6-triazapentalenyl (TTTA), which is known for its
photoinduced transition from the dimerized spin-singlet phase to the regular
paramagnetic phase. We conclude that the lowest photoexcited state of TTTA is
the interdimer CT exciton state and the second lowest state is the intradimer
CT exciton state.Comment: 6 pages, 6 figures, to be published in J. Phys. Soc. Jp
X-Band ESR Determination of Dzyaloshinsky-Moriya Interaction in 2D SrCu(BO) System
X-band ESR measurements on a single crystal of SrCu(BO) system in
a temperature range between 10 K and 580 K are presented. The temperature and
angular dependence of unusually broad ESR spectra can be explained by the
inclusion of antisymmetric Dzyaloshinsky-Moriya (DM) interaction, which yields
by far the largest contribution to the linewidth. However, the well-accepted
picture of only out-of-plane interdimer DM vectors is not sufficient for
explanation of the observed angular dependence. In order to account for the
experimental linewidth anisotropy we had to include sizable in-plane components
of interdimer as well as intradimer DM interaction in addition to the
out-of-plane interdimer one. The nearest-neighbor DM vectors lie perpendicular
to crystal anisotropy c-axis due to crystal symmetry. We also emphasize that
above the structural phase transition occurring at 395 K dynamical mechanism
should be present allowing for instantaneous DM interactions. Moreover, the
linewidth at an arbitrary temperature can be divided into two contributions;
namely, the first part arising from spin dynamics governed by the spin
Hamiltonian of the system and the second part due to significant spin-phonon
coupling. The nature of the latter mechanism is attributed to phonon-modulation
of the antisymmetric interaction, which is responsible for the observed linear
increase of the linewidth at high temperatures.Comment: 17 pages, 4 figures, submitted to PR
Dynamics of photoexcited states in one-dimensional dimerized Mott insulators
Dynamical properties of photoexcited states are theoretically studied in a
one-dimensional Mott insulator dimerized by the spin-Peierls instability.
Numerical calculations combined with a perturbative analysis have revealed that
the lowest photoexcited state without nearest-neighbor interaction corresponds
to an interdimer charge transfer excitation that belongs to dispersive
excitations. This excited state destabilizes the dimerized phase, leading to a
photoinduced inverse spin-Peierls transition. We discuss the purely electronic
origin of midgap states that are observed in a latest photoexcitation
experiment of an organic spin-Peierls compound, K-TCNQ
(potassium-tetracyanoquinodimethane).Comment: 13 pages, 13 figures, accepted for publication in PR
Bandwidth-controlled Mott transition in I. Optical studies of localized charge excitations
Infrared reflection measurements of the half-filled two-dimensional organic
conductors -(BEDT-TTF)Cu[N(CN)]BrCl were
performed as a function of temperature ( K) and
Br-substitution (, 40%, 73%, 85%, and 90%) in order to study the
metal-insulator transition. We can distinguish absorption processes due to
itinerant and localized charge carriers. The broad mid-infrared absorption has
two contributions: transitions between the two Hubbard bands and intradimer
excitations from the charges localized on the (BEDT-TTF) dimer. Since the
latter couple to intramolecular vibrations of BEDT-TTF, the analysis of both
electronic and vibrational features provides a tool to disentangle these
contributions and to follow their temperature and electronic-correlations
dependence. Calculations based on the cluster model support our interpretation.Comment: 12 pages, 12 figure
Single crystal growth and study of the magnetic properties of the mixed spin-dimer system BaSrCrO
The compounds SrCrO and BaCrO are
insulating dimerized antiferromagnets with Cr magnetic ions. These
spin- ions form hexagonal bilayers with a strong intradimer
antiferromagnetic interaction, that leads to a singlet ground state and gapped
triplet states. We report on the effect on the magnetic properties of
SrCrO by introducing chemical disorder upon replacing Sr by
Ba. Two single crystals of BaSrCrO with
(3.33\% of ) and (6.66\%) were grown in a four-mirror type
optical floating-zone furnace. The magnetic properties on these compounds were
studied by magnetization measurements. Inelastic neutron scattering
measurements on BaSrCrO were performed in order to
determine the interaction constants and the spin gap for . The
intradimer interaction constant is found to be =5.332(2) meV, about 4\%
smaller than that of pure SrCrO, while the interdimer
exchange interaction is smaller by 6.9\%. These results indicate a
noticeable change in the magnetic properties by a random substitution effect
Softening of Magnetic Excitations Leading to Pressure-Induced Quantum Phase Transition in Gapped Spin System KCuCl
KCuCl is a three dimensionally coupled spin dimer system, which undergoes
a pressure-induced quantum phase transition from a gapped ground state to an
antiferromagnetic state at a critical pressure of kbar.
Magnetic excitations in KCuCl at a hydrostatic pressure of 4.7 kbar have
been investigated by conducting neutron inelastic scattering experiments using
a newly designed cylindrical high-pressure clamp cell. A well-defined single
excitation mode is observed. The softening of the excitation mode due to the
applied pressure is clearly observed. From the analysis of the dispersion
relations, it is found that an intradimer interaction decreases under
hydrostatic pressure, while most interdimer interactions increase.Comment: 4 pages, 5 figures, 1 table, jpsj2.cls, to be published in J. Phys.
Soc. Jpn. Vol.76 (2007), the graphic problem of Fig.2 was fixe
Spin-gap opening accompanied by a strong magnetoelastic response in the S=1 magnetic dimer system Ba3BiRu2O9
Neutron diffraction, magnetization, resistivity, and heat capacity
measurements on the 6H-perovskite Ba3BiRu2O9 reveal simultaneous magnetic and
structural dimerization driven by strong magnetoelastic coupling. An
isostructural but strongly displacive first-order transition on cooling through
T*=176 K is associated with a change in the nature of direct Ru-Ru bonds within
Ru2O9 face-sharing octahedra. Above T*, Ba3BiRu2O9 is an S=1 magnetic dimer
system with intradimer exchange interactions J0/kB=320 K and interdimer
exchange interactions J'/kB=-160 K. Below T*, a spin-gapped state emerges with
\Delta\approx220 K. Ab initio calculations confirm antiferromagnetic exchange
within dimers, but the transition is not accompanied by long range-magnetic
order.Comment: 5 pages, 5 figures, accepted by Physical Review
Pressure-Induced Magnetic Quantum Phase Transition in Gapped Spin System KCuCl3
Magnetization and neutron elastic scattering measurements under a hydrostatic
pressure were performed on KCuCl3, which is a three-dimensionally coupled spin
dimer system with a gapped ground state. It was found that an intradimer
interaction decreases with increasing pressure, while the sum of interdimer
interactions increases. This leads to the shrinkage of spin gap. A quantum
phase transition from a gapped state to an antiferromagnetic state occurs at Pc
? 8.2 kbar. For P > P c, magnetic Bragg reflections were observed at reciprocal
lattice points equivalent to those for the lowest magnetic excitation at zero
pressure. This confirms that the spin gap decreases and closes under applied
pressure.Comment: 7 pages, 10 figures, submitted to J. Phys. Soc. Jp
- âŠ