67,950 research outputs found

    Mini-L Loran-C receiver

    Get PDF
    A brief description of the Loran-C system is presented with a suggested receiver based on a standard AM-FM integrated circuit chip. Construction details of the Mini-L Loran-C prototype front-end are considered. The Mini-L system was bench tested for approximately 500 hours under a variety of reception conditions. The Mini-L concept combined with a microprocessor system is a promising approach to the development of truly low-cost Loran-C receivers for the marine and airborne user

    CSI Feedback Reduction for MIMO Interference Alignment

    Full text link
    Interference alignment (IA) is a linear precoding strategy that can achieve optimal capacity scaling at high SNR in interference networks. Most of the existing IA designs require full channel state information (CSI) at the transmitters, which induces a huge CSI signaling cost. Hence it is desirable to improve the feedback efficiency for IA and in this paper, we propose a novel IA scheme with a significantly reduced CSI feedback. To quantify the CSI feedback cost, we introduce a novel metric, namely the feedback dimension. This metric serves as a first-order measurement of CSI feedback overhead. Due to the partial CSI feedback constraint, conventional IA schemes can not be applied and hence, we develop a novel IA precoder / decorrelator design and establish new IA feasibility conditions. Via dynamic feedback profile design, the proposed IA scheme can also achieve a flexible tradeoff between the degree of freedom (DoF) requirements for data streams, the antenna resources and the CSI feedback cost. We show by analysis and simulations that the proposed scheme achieves substantial reductions of CSI feedback overhead under the same DoF requirement in MIMO interference networks.Comment: 30 pages, 7 figures, accepted for publication by IEEE transactions on signal processing in June, 201

    A New Phase Transition for Local Delays in MANETs

    Get PDF
    We consider Mobile Ad-hoc Network (MANET) with transmitters located according to a Poisson point in the Euclidean plane, slotted Aloha Medium Access (MAC) protocol and the so-called outage scenario, where a successful transmission requires a Signal-to-Interference-and-Noise (SINR) larger than some threshold. We analyze the local delays in such a network, namely the number of times slots required for nodes to transmit a packet to their prescribed next-hop receivers. The analysis depends very much on the receiver scenario and on the variability of the fading. In most cases, each node has finite-mean geometric random delay and thus a positive next hop throughput. However, the spatial (or large population) averaging of these individual finite mean-delays leads to infinite values in several practical cases, including the Rayleigh fading and positive thermal noise case. In some cases it exhibits an interesting phase transition phenomenon where the spatial average is finite when certain model parameters are below a threshold and infinite above. We call this phenomenon, contention phase transition. We argue that the spatial average of the mean local delays is infinite primarily because of the outage logic, where one transmits full packets at time slots when the receiver is covered at the required SINR and where one wastes all the other time slots. This results in the "RESTART" mechanism, which in turn explains why we have infinite spatial average. Adaptive coding offers a nice way of breaking the outage/RESTART logic. We show examples where the average delays are finite in the adaptive coding case, whereas they are infinite in the outage case.Comment: accepted for IEEE Infocom 201
    corecore