67,950 research outputs found
Mini-L Loran-C receiver
A brief description of the Loran-C system is presented with a suggested receiver based on a standard AM-FM integrated circuit chip. Construction details of the Mini-L Loran-C prototype front-end are considered. The Mini-L system was bench tested for approximately 500 hours under a variety of reception conditions. The Mini-L concept combined with a microprocessor system is a promising approach to the development of truly low-cost Loran-C receivers for the marine and airborne user
Recommended from our members
The Texas Spoofing Test Battery: Toward a Standard for Evaluating GPS Signal Authentication Techniques
A battery of recorded spoofing scenarios has been compiled
for evaluating civil Global Positioning System (GPS) signal
authentication techniques. The battery can be considered
the data component of an evolving standard meant to
define the notion of spoof resistance for commercial GPS
receivers. The setup used to record the scenarios is described.
A detailed description of each scenario reveals
readily detectable anomalies that spoofing detectors could target to improve GPS securityAerospace Engineering and Engineering Mechanic
CSI Feedback Reduction for MIMO Interference Alignment
Interference alignment (IA) is a linear precoding strategy that can achieve
optimal capacity scaling at high SNR in interference networks. Most of the
existing IA designs require full channel state information (CSI) at the
transmitters, which induces a huge CSI signaling cost. Hence it is desirable to
improve the feedback efficiency for IA and in this paper, we propose a novel IA
scheme with a significantly reduced CSI feedback. To quantify the CSI feedback
cost, we introduce a novel metric, namely the feedback dimension. This metric
serves as a first-order measurement of CSI feedback overhead. Due to the
partial CSI feedback constraint, conventional IA schemes can not be applied and
hence, we develop a novel IA precoder / decorrelator design and establish new
IA feasibility conditions. Via dynamic feedback profile design, the proposed IA
scheme can also achieve a flexible tradeoff between the degree of freedom (DoF)
requirements for data streams, the antenna resources and the CSI feedback cost.
We show by analysis and simulations that the proposed scheme achieves
substantial reductions of CSI feedback overhead under the same DoF requirement
in MIMO interference networks.Comment: 30 pages, 7 figures, accepted for publication by IEEE transactions on
signal processing in June, 201
A New Phase Transition for Local Delays in MANETs
We consider Mobile Ad-hoc Network (MANET) with transmitters located according
to a Poisson point in the Euclidean plane, slotted Aloha Medium Access (MAC)
protocol and the so-called outage scenario, where a successful transmission
requires a Signal-to-Interference-and-Noise (SINR) larger than some threshold.
We analyze the local delays in such a network, namely the number of times slots
required for nodes to transmit a packet to their prescribed next-hop receivers.
The analysis depends very much on the receiver scenario and on the variability
of the fading. In most cases, each node has finite-mean geometric random delay
and thus a positive next hop throughput. However, the spatial (or large
population) averaging of these individual finite mean-delays leads to infinite
values in several practical cases, including the Rayleigh fading and positive
thermal noise case. In some cases it exhibits an interesting phase transition
phenomenon where the spatial average is finite when certain model parameters
are below a threshold and infinite above. We call this phenomenon, contention
phase transition. We argue that the spatial average of the mean local delays is
infinite primarily because of the outage logic, where one transmits full
packets at time slots when the receiver is covered at the required SINR and
where one wastes all the other time slots. This results in the "RESTART"
mechanism, which in turn explains why we have infinite spatial average.
Adaptive coding offers a nice way of breaking the outage/RESTART logic. We show
examples where the average delays are finite in the adaptive coding case,
whereas they are infinite in the outage case.Comment: accepted for IEEE Infocom 201
- …
