1,289,785 research outputs found

    The Guppy Effect as Interference

    Full text link
    People use conjunctions and disjunctions of concepts in ways that violate the rules of classical logic, such as the law of compositionality. Specifically, they overextend conjunctions of concepts, a phenomenon referred to as the Guppy Effect. We build on previous efforts to develop a quantum model that explains the Guppy Effect in terms of interference. Using a well-studied data set with 16 exemplars that exhibit the Guppy Effect, we developed a 17-dimensional complex Hilbert space H that models the data and demonstrates the relationship between overextension and interference. We view the interference effect as, not a logical fallacy on the conjunction, but a signal that out of the two constituent concepts, a new concept has emerged.Comment: 10 page

    Landau-Zener Interference in Multilevel Superconducting Flux Qubits Driven by Large Amplitude Fields

    Full text link
    We proposed an analytical model to analyze the Landau-Zener interference in a multilevel superconducting flux qubit driven by large amplitude external fields. Our analytical results agree remarkably with those of the experiment [Nature 455, 51 (2008)]. Moreover, we studied the effect of driving-frequency and dephasing rate on the interference. The dephasing generally destroys the interference while increasing frequency rebuilds the interference at large dephasing rate. At certain driving frequency and dephasing rate, the interference shows some anomalous features as observed in recent experiments.Comment: 7 pages, 6 figure

    The Interference Term in the Wigner Distribution Function and the Aharonov-Bohm Effect

    Full text link
    A phase space representation of the Aharonov-Bohm effect is presented. It shows that the shift of interference fringes is associated to the interference term of the Wigner distribution function of the total wavefunction, whereas the interference pattern is defined by the common projections of the Wigner distribution functions of the interfering beamsComment: 10 pages, 4 figure

    Quantum interference phenomena in the Casimir effect

    Get PDF
    We propose a definitive test of whether plates involved in Casimir experiments should be modeled with ballistic or diffusive electrons--a prominent controversy highlighted by a number of conflicting experiments. The unambiguous test we propose is a measurement of the Casimir force between a disordered quasi-2D metallic plate and a three-dimensional metallic system at low temperatures, in which disorder-induced weak localization effects modify the well-known Drude result in an experimentally tunable way. We calculate the weak localization correction to the Casimir force as a function of magnetic field and temperature and demonstrate that the quantum interference suppression of the Casimir force is a strong, observable effect. The coexistence of weak localization suppression in electronic transport and Casimir pressure would lend credence to the Drude theory of the Casimir effect, while the lack of such correlation would indicate a fundamental problem with the existing theory. We also study mesoscopic disorder fluctuations in the Casimir effect and estimate the width of the distribution of Casmir energies due to disorder fluctuations.Comment: 9 pages, 9 figure

    Entangled Hanbury Brown Twiss effects with edge states

    Full text link
    Electronic Hanbury Brown Twiss correlations are discussed for geometries in which transport is along adiabatically guided edge channels. We briefly discuss partition noise experiments and discuss the effect of inelastic scattering and dephasing on current correlations. We then consider a two-source Hanbury Brown Twiss experiment which demonstrates strikingly that even in geometries without an Aharonov-Bohm effect in the conductance matrix (second-order interference), correlation functions can (due to fourth-order interference) be sensitive to a flux. Interestingly we find that this fourth-order interference effect is closely related to orbital entanglement. The entanglement can be detected via violation of a Bell Inequality in this geometry even so particles emanate from uncorrelated sources.Comment: International Symposium "Quantum Hall Effect: Past, Present and Future
    corecore