22,801 research outputs found
Diffusion and Interdiffusion in Binary Metallic Melts
We discuss the dependence of self- and interdiffusion coefficients on
temperature and composition for two prototypical binary metallic melts, Al-Ni
and Zr-Ni, in molecular-dynamics (MD) computer simulations and the
mode-coupling theory of the glass transition (MCT). Dynamical processes that
are mainly entropic in origin slow down mass transport (as expressed through
self diffusion) in the mixture as compared to the ideal-mixing contribution.
Interdiffusion of chemical species is a competition of slow kinetic modes with
a strong thermodynamic driving force that is caused by non-entropic
interactions. The combination of both dynamic and thermodynamic effects causes
qualitative differences in the concentration dependence of self-diffusion and
interdiffusion coefficients. At high temperatures, the thermodynamic
enhancement of interdiffusion prevails, while at low temperatures, kinetic
effects dominate the concentration dependence, rationalized within MCT as the
approach to its ideal-glass transition temperature . The Darken equation
relating self- and interdiffusion qualitatively reproduces the
concentration-dependence in both Zr-Ni and Al-Ni, but quantitatively, the
kinetic contributions to interdiffusion can be slower than the lower bound
suggested by the Darken equation. As temperature is decreased, the agreement
with Darken's equation improves, due to a strong coupling of all kinetic modes
that is a generic feature predicted by MCT.Comment: 16 pages, 12 figure
Intersubband carrier scattering in n- and p-Si/SiGe quantum wells with diffuse interfaces
Scattering rate calculations in two-dimensional Si/Si1−xGex systems have typically been restricted to rectangular Ge profiles at interfaces between layers. Real interfaces however, may exhibit diffuse Ge profiles either by design or as a limitation of the growth process. It is shown here that alloy disorder scattering dramatically increases with Ge interdiffusion in (100) and (111) n-type quantum wells, but remains almost constant in (100) p-type heterostructures. It is also shown that smoothing of the confining potential leads to large changes in subband energies and scattering rates and a method is presented for calculating growth process tolerances
The Fermi level effect in III-V intermixing: The final nail in the coffin?
Copyright 1997 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Journal of Applied Physics 81, 2179 (1997) and may be found at
Chemical diffusion of fluorine in jadeite melt at high pressure
The chemical diffusion of fluorine in jadeite melt has been investigated from 10 to 15 kbars and 1200 to 1400°C using diffusion couples of Jadeite melt and fluorine-bearing jadeite melt (6.3 wt.% F). The diffusion profile data indicate that the diffusion process is concentration-independent, binary, F-O interdiffusion. The F-O interdiffusion coefficient ranges from 1.3 × 10−7 to 7.1 × 10−7 cm2/sec and is much larger than those obtained by Kushiro (1983) for Si-Ge and Al-Ga interdimision in jadeitic melts. The Arrhenius activation energy of diffusion is in the range of 36 to 39 kcal/mole as compared with 19 kcal/mole for fluorine tracer diffusion in a lime-aluminosilicate melt. The diffusivity and activation energy of F-O interdiffusion vary slightly with pressure, but the pressure dependence of F-O, Al-Ga and Si-Ge interdiffusion may be related to the relative volumes of the interdiffusing species for each pair. The magnitude of chemical diffusivity of fluorine is comparable to that of the chemical diffusivity of water in obsidian melts. The diffusivities of various cations are significantly increased by the addition of fluorine or water to a silicate melt. This fact, combined with the high diffusivity of fluorine, suggests that the F− ion is the principal diffusing species in dry aluminosilicate melts and that dissolved fluorine will accelerate chemical equilibration in dry igneous melts
On the interdiffusion-based quantum cascade laser
Design procedure for the active region of current
pumped quantum cascade laser is proposed, so to achieve maximal gain. Starting with an arbitrary smooth potential, a family of isospectral Hamiltonians with predefined energy spectrum is generated using the inverse spectral theory. By varying the relevant control parameter the potential shape is varied, inducing changes
in transition dipole moments and electron–phonon scattering
times, and the optimal potential which gives the largest gain is thus found. For purpose of realization, a simple step quantum-well structure with just a few layers is then designed so that in the post-growth heating-induced layer interdiffusion, it will acquire a shape as close as possible to the optimal smooth potentia
- …
