99,004 research outputs found
Lattice Model for water-solute mixtures
A lattice model for the study of mixtures of associating liquids is proposed.
Solvent and solute are modeled by adapting the associating lattice gas (ALG)
model. The nature of interaction solute/solvent is controlled by tuning the
energy interactions between the patches of ALG model. We have studied three set
of parameters, resulting on, hydrophilic, inert and hydrophobic interactions.
Extensive Monte Carlo simulations were carried out and the behavior of pure
components and the excess properties of the mixtures have been studied. The
pure components: water (solvent) and solute, have quite similar phase diagrams,
presenting: gas, low density liquid, and high density liquid phases. In the
case of solute, the regions of coexistence are substantially reduced when
compared with both the water and the standard ALG models. A numerical procedure
has been developed in order to attain series of results at constant pressure
from simulations of the lattice gas model in the grand canonical ensemble. The
excess properties of the mixtures: volume and enthalpy as the function of the
solute fraction have been studied for different interaction parameters of the
model. Our model is able to reproduce qualitatively well the excess volume and
enthalpy for different aqueous solutions. For the hydrophilic case, we show
that the model is able to reproduce the excess volume and enthalpy of mixtures
of small alcohols and amines. The inert case reproduces the behavior of large
alcohols such as, propanol, butanol and pentanol. For last case (hydrophobic),
the excess properties reproduce the behavior of ionic liquids in aqueous
solution.Comment: 28 pages, 13 figure
Hypersonic aerodynamics on thin bodies with interaction and upstream influence
In the fundamental configuration studied here, a steady hypersonic free stream flows over a thin sharp aligned airfoil or flat plate with a leading-edge shock wave, and the flow field in the shock layer (containing a viscous and an inviscid layer) is steady laminar and two-dimensional, for a perfect gas without real and high-temperature gas effects. The viscous and inviscid layers are analysed and computed simultaneously in the region from the leading edge to the trailing edge, including the upstream-influence effect present, to determine the interactive flow throughout the shock layer and the positions of the shock wave and the boundary-layer edge, where matching is required. Further theoretical analysis of the shock layer helps to explain the computational results, including the nonlinear breakdown possible when forward marching against enhanced upstream influence, for example as the wall enthalpy increases towards its insulated value. Then the viscous layer is computed by sweeping methods, for higher values of wall enthalpies, to prevent this nonlinear breakdown for airfoils including the flat plate. Thin airfoils in hypersonic viscous flow are treated, for higher values of the wall enthalpies and with the upstream-influence effect, as are hypersonic inviscid flows, by modifying the computational methods used for the flat plate. Also, the behaviour of the upstream influence for bodies of relatively large thickness, and under wall velocity slip and enthalpy jump for flat plates, is discussed briefly from a theoretical point of view. Subsequent to the present work, computations based on the Navier–Stokes and on the parabolized Navier–Stokes equations have yielded excellent and good agreement respectively with the present predictions for large Mach and Reynolds numbers
Role of solvent for globular proteins in solution
The properties of the solvent affect the behavior of the solution. We propose
a model that accounts for the contribution of the solvent free energy to the
free energy of globular proteins in solution. For the case of an attractive
square well potential, we obtain an exact mapping of the phase diagram of this
model without solvent to the model that includes the solute-solvent
contribution. In particular we find for appropriate choices of parameters upper
critical points, lower critical points and even closed loops with both upper
and lower critical points, similar to one found before [Macromolecules, 36,
5845 (2003)]. In the general case of systems whose interactions are not
attractive square wells, this mapping procedure can be a first approximation to
understand the phase diagram in the presence of solvent. We also present
simulation results for both the square well model and a modified Lennard-Jones
model.Comment: 18 pages, 9 figure
The properties of electrolyte solutions in nonaqueous and mixed solvents
This paper constitutes a reviev of the results of
investigations on electrolyte solutions in some organic
solvents that behaves similarly to water from thermochemical
point of vi,»w as well as in some water - organic
mixed solvents. The investigations have been carried out
in Physical Chemistry Department of University of Łódź in
recent years.Zadanie pt. „Digitalizacja i udostępnienie w Cyfrowym Repozytorium Uniwersytetu Łódzkiego kolekcji czasopism naukowych wydawanych przez Uniwersytet Łódzki” nr 885/P-DUN/2014 dofinansowane zostało ze środków MNiSW w ramach działalności upowszechniającej naukę
First-principles study of ternary fcc solution phases from special quasirandom structures
In the present work, ternary Special Quasirandom Structures (SQSs) for a fcc
solid solution phase are generated at different compositions,
and , ,
whose correlation functions are satisfactorily close to those of a random fcc
solution. The generated SQSs are used to calculate the mixing enthalpy of the
fcc phase in the Ca-Sr-Yb system. It is observed that first-principles
calculations of all the binary and ternary SQSs in the Ca-Sr-Yb system exhibit
very small local relaxation. It is concluded that the fcc ternary SQSs can
provide valuable information about the mixing behavior of the fcc ternary solid
solution phase. The SQSs presented in this work can be widely used to study the
behavior of ternary fcc solid solutions.Comment: 20 pages, 7 figure
- …
