99,004 research outputs found

    Lattice Model for water-solute mixtures

    Full text link
    A lattice model for the study of mixtures of associating liquids is proposed. Solvent and solute are modeled by adapting the associating lattice gas (ALG) model. The nature of interaction solute/solvent is controlled by tuning the energy interactions between the patches of ALG model. We have studied three set of parameters, resulting on, hydrophilic, inert and hydrophobic interactions. Extensive Monte Carlo simulations were carried out and the behavior of pure components and the excess properties of the mixtures have been studied. The pure components: water (solvent) and solute, have quite similar phase diagrams, presenting: gas, low density liquid, and high density liquid phases. In the case of solute, the regions of coexistence are substantially reduced when compared with both the water and the standard ALG models. A numerical procedure has been developed in order to attain series of results at constant pressure from simulations of the lattice gas model in the grand canonical ensemble. The excess properties of the mixtures: volume and enthalpy as the function of the solute fraction have been studied for different interaction parameters of the model. Our model is able to reproduce qualitatively well the excess volume and enthalpy for different aqueous solutions. For the hydrophilic case, we show that the model is able to reproduce the excess volume and enthalpy of mixtures of small alcohols and amines. The inert case reproduces the behavior of large alcohols such as, propanol, butanol and pentanol. For last case (hydrophobic), the excess properties reproduce the behavior of ionic liquids in aqueous solution.Comment: 28 pages, 13 figure

    Hypersonic aerodynamics on thin bodies with interaction and upstream influence

    Get PDF
    In the fundamental configuration studied here, a steady hypersonic free stream flows over a thin sharp aligned airfoil or flat plate with a leading-edge shock wave, and the flow field in the shock layer (containing a viscous and an inviscid layer) is steady laminar and two-dimensional, for a perfect gas without real and high-temperature gas effects. The viscous and inviscid layers are analysed and computed simultaneously in the region from the leading edge to the trailing edge, including the upstream-influence effect present, to determine the interactive flow throughout the shock layer and the positions of the shock wave and the boundary-layer edge, where matching is required. Further theoretical analysis of the shock layer helps to explain the computational results, including the nonlinear breakdown possible when forward marching against enhanced upstream influence, for example as the wall enthalpy increases towards its insulated value. Then the viscous layer is computed by sweeping methods, for higher values of wall enthalpies, to prevent this nonlinear breakdown for airfoils including the flat plate. Thin airfoils in hypersonic viscous flow are treated, for higher values of the wall enthalpies and with the upstream-influence effect, as are hypersonic inviscid flows, by modifying the computational methods used for the flat plate. Also, the behaviour of the upstream influence for bodies of relatively large thickness, and under wall velocity slip and enthalpy jump for flat plates, is discussed briefly from a theoretical point of view. Subsequent to the present work, computations based on the Navier–Stokes and on the parabolized Navier–Stokes equations have yielded excellent and good agreement respectively with the present predictions for large Mach and Reynolds numbers

    Role of solvent for globular proteins in solution

    Full text link
    The properties of the solvent affect the behavior of the solution. We propose a model that accounts for the contribution of the solvent free energy to the free energy of globular proteins in solution. For the case of an attractive square well potential, we obtain an exact mapping of the phase diagram of this model without solvent to the model that includes the solute-solvent contribution. In particular we find for appropriate choices of parameters upper critical points, lower critical points and even closed loops with both upper and lower critical points, similar to one found before [Macromolecules, 36, 5845 (2003)]. In the general case of systems whose interactions are not attractive square wells, this mapping procedure can be a first approximation to understand the phase diagram in the presence of solvent. We also present simulation results for both the square well model and a modified Lennard-Jones model.Comment: 18 pages, 9 figure

    The properties of electrolyte solutions in nonaqueous and mixed solvents

    Get PDF
    This paper constitutes a reviev of the results of investigations on electrolyte solutions in some organic solvents that behaves similarly to water from thermochemical point of vi,»w as well as in some water - organic mixed solvents. The investigations have been carried out in Physical Chemistry Department of University of Łódź in recent years.Zadanie pt. „Digitalizacja i udostępnienie w Cyfrowym Repozytorium Uniwersytetu Łódzkiego kolekcji czasopism naukowych wydawanych przez Uniwersytet Łódzki” nr 885/P-DUN/2014 dofinansowane zostało ze środków MNiSW w ramach działalności upowszechniającej naukę

    First-principles study of ternary fcc solution phases from special quasirandom structures

    Get PDF
    In the present work, ternary Special Quasirandom Structures (SQSs) for a fcc solid solution phase are generated at different compositions, xA=xB=xC=13x_A=x_B=x_C=\tfrac{1}{3} and xA=12x_A=\tfrac{1}{2}, xB=xC=14x_B=x_C=\tfrac{1}{4}, whose correlation functions are satisfactorily close to those of a random fcc solution. The generated SQSs are used to calculate the mixing enthalpy of the fcc phase in the Ca-Sr-Yb system. It is observed that first-principles calculations of all the binary and ternary SQSs in the Ca-Sr-Yb system exhibit very small local relaxation. It is concluded that the fcc ternary SQSs can provide valuable information about the mixing behavior of the fcc ternary solid solution phase. The SQSs presented in this work can be widely used to study the behavior of ternary fcc solid solutions.Comment: 20 pages, 7 figure
    corecore