387,601 research outputs found

    The SGIA and the Common Growing Language

    Get PDF
    Human or virtual agents are presented in our lives daily. They serve our purposes and represent us in different many situations. Nowadays the number of virtual agents is increasing daily because they are cheaper, faster and more accurate than human agents. Our aim in this article is to define a new type of intelligent agent called SGIA – Self Growing Intelligent Agent and a new defining language for it. The SGIA agent is an intelligent agent with all the common agents’ characteristics and with other special one: that to learn and grow by itself in knowledge and size.Software Agent, Knowledge Management, Education Process, Language Development

    Modelling Socially Intelligent Agents

    Get PDF
    The perspective of modelling agents rather than using them for a specificed purpose entails a difference in approach. In particular an emphasis on veracity as opposed to efficiency. An approach using evolving populations of mental models is described that goes some way to meet these concerns. It is then argued that social intelligence is not merely intelligence plus interaction but should allow for individual relationships to develop between agents. This means that, at least, agents must be able to distinguish, identify, model and address other agents, either individually or in groups. In other words that purely homogeneous interaction is insufficient. Two example models are described that illustrate these concerns, the second in detail where agents act and communicate socially, where this is determined by the evolution of their mental models. Finally some problems that arise in the interpretation of such simulations is discussed

    Vehicle Based Intersection Management with Intelligent Agents

    Get PDF
    Signal-based intersection management will change when vehicles with intelligent capability are available in the future. Intelligent agents embedded in vehicle software will be responsible for vehicle control and route guidance. Intersection management can be achieved through the collaboration of these agents, without a centralized control infrastructure. This research focuses on the use of distributed multi-agent systems to provide microscopic adaptive control which might reduce traffic delay and chances of collisions at intersections. A hypothesized Mobile Ad-hoc Network provides communication links to connect the agents.Intelligent Agents, Adaptive Intersection Control

    Avoiding Wireheading with Value Reinforcement Learning

    Full text link
    How can we design good goals for arbitrarily intelligent agents? Reinforcement learning (RL) is a natural approach. Unfortunately, RL does not work well for generally intelligent agents, as RL agents are incentivised to shortcut the reward sensor for maximum reward -- the so-called wireheading problem. In this paper we suggest an alternative to RL called value reinforcement learning (VRL). In VRL, agents use the reward signal to learn a utility function. The VRL setup allows us to remove the incentive to wirehead by placing a constraint on the agent's actions. The constraint is defined in terms of the agent's belief distributions, and does not require an explicit specification of which actions constitute wireheading.Comment: Artificial General Intelligence (AGI) 201

    Towards Learning ‘Self’ and Emotional Knowledge in Social and Cultural Human-Agent Interactions

    Get PDF
    Original article can be found at: http://www.igi-global.com/articles/details.asp?ID=35052 Copyright IGI. Posted by permission of the publisher.This article presents research towards the development of a virtual learning environment (VLE) inhabited by intelligent virtual agents (IVAs) and modeling a scenario of inter-cultural interactions. The ultimate aim of this VLE is to allow users to reflect upon and learn about intercultural communication and collaboration. Rather than predefining the interactions among the virtual agents and scripting the possible interactions afforded by this environment, we pursue a bottomup approach whereby inter-cultural communication emerges from interactions with and among autonomous agents and the user(s). The intelligent virtual agents that are inhabiting this environment are expected to be able to broaden their knowledge about the world and other agents, which may be of different cultural backgrounds, through interactions. This work is part of a collaborative effort within a European research project called eCIRCUS. Specifically, this article focuses on our continuing research concerned with emotional knowledge learning in autobiographic social agents.Peer reviewe

    A conceptual framework for interactive virtual storytelling

    Get PDF
    This paper presents a framework of an interactive storytelling system. It can integrate five components: management centre, evaluation centre, intelligent virtual agent, intelligent virtual environment, and users, making possible interactive solutions where the communication among these components is conducted in a rational and intelligent way. Environment plays an important role in providing heuristic information for agents through communicating with the management centre. The main idea is based on the principle of heuristic guiding of the behaviour of intelligent agents for guaranteeing the unexpectedness and consistent themes

    Using Intelligent Agents to Manage Business Processes

    No full text
    This paper describes work undertaken in the ADEPT (Advanced Decision Environment for Process Tasks) project towards developing an agent-based infrastructure for managing business processes. We describe how the key technology of negotiating, service providing, autonomous agents was realised and demonstrate how this was applied to the BT business process of providing a customer quote for network services

    Intelligent Association Exploration and Exploitation of Fuzzy Agents in Ambient Intelligent Environments

    Get PDF
    This paper presents a novel fuzzy-based intelligent architecture that aims to find relevant and important associations between embedded-agent based services that form Ambient Intelligent Environments (AIEs). The embedded agents are used in two ways; first they monitor the inhabitants of the AIE, learning their behaviours in an online, non-intrusive and life-long fashion with the aim of pre-emptively setting the environment to the users preferred state. Secondly, they evaluate the relevance and significance of the associations to various services with the aim of eliminating redundant associations in order to minimize the agent computational latency within the AIE. The embedded agents employ fuzzy-logic due to its robustness to the uncertainties, noise and imprecision encountered in AIEs. We describe unique real world experiments that were conducted in the Essex intelligent Dormitory (iDorm) to evaluate and validate the significance of the proposed architecture and methods
    corecore