1,253,123 research outputs found
Integrated atomistic process and device simulation of decananometre MOSFETs
In this paper we present a methodology for the integrated atomistic process and device simulation of decananometre MOSFETs. The atomistic process simulations were carried out using the kinetic Monte Carlo process simulator DADOS, which is now integrated into the Synopsys 3D process and device simulation suite Taurus. The device simulations were performed using the Glasgow 3D statistical atomistic simulator, which incorporates density gradient quantum corrections. The overall methodology is illustrated in the atomistic process and device simulation of a well behaved 35 nm physical gate length MOSFET reported by Toshiba
Integrated building performance simulation
This paper justifies the need for an integrated approach to building performance assessment and provides examples of the technical appraisals that may then be enabled. The contention is that the use of design tools which focus on a single domain will result in sub-optimum design solutions in terms of indoor air quality, occupant comfort, energy use and environmental impact
An Agent-based approach to modelling integrated product teams undertaking a design activity.
The interactions between individual designers, within integrated product teams, and the nature of design tasks, all have a significant impact upon how well a design task can be performed, and hence the quality of the resultant product and the time in which it can be delivered. In this paper we describe an ongoing research project which aims to model integrated product teams through the use of multi-agent systems. We first describe the background and rationale for our work, and then present our initial computational model and results from the simulation of an integrated product team. The paper concludes with a discussion of how the model will evolve to improve the accuracy of the simulation
Toward a first-principles integrated simulation of tokamak edge plasmas
Performance of the ITER is anticipated to be highly sensitive to the edge plasma condition. The edge pedestal in ITER needs to be predicted from an integrated simulation of the necessary first-principles, multi-scale physics codes. The mission of the SciDAC Fusion Simulation Project (FSP) Prototype Center for Plasma Edge Simulation (CPES) is to deliver such a code integration framework by (1) building new kinetic codes XGC0 and XGC1, which can simulate the edge pedestal buildup; (2) using and improving the existing MHD codes ELITE, M3D-OMP, M3D-MPP and NIMROD, for study of large-scale edge instabilities called Edge Localized Modes (ELMs); and (3) integrating the codes into a framework using cutting-edge computer science technology. Collaborative effort among physics, computer science, and applied mathematics within CPES has created the first working version of the End-to-end Framework for Fusion Integrated Simulation (EFFIS), which can be used to study the pedestal-ELM cycles
Technology survey of computer software as applicable to the MIUS project
Existing computer software, available from either governmental or private sources, applicable to modular integrated utility system program simulation is surveyed. Several programs and subprograms are described to provide a consolidated reference, and a bibliography is included. The report covers the two broad areas of design simulation and system simulation
Building systems and indoor environment : simulation for design decision support
This paper outlines the state-of-the-art in integrated building simulation for design support. The ESP-r system is used as an example where integrated simulation is a core philosophy behind the development. The paper finishes with indicating a number of barriers, which hinder routine application of simulation for building design
Analytical simulation of the Langley Research Center integrated life-support system, volume 1
Analytical simulation of integrated life support system and oxygen recovery syste
Reconstructing the solar integrated radial velocity using MDI/SOHO
Searches for exoplanets with radial velocity techniques are increasingly
sensitive to stellar activity. It is therefore crucial to characterize how this
activity influences radial velocity measurements in their study of the
detectability of planets in these conditions. In a previous work we simulated
the impact of spots and plages on the radial velocity of the Sun. Our objective
is to compare this simulation with the observed radial velocity of the Sun for
the same period. We use Dopplergrams and magnetograms obtained by MDI/SOHO over
one solar cycle to reconstruct the solar integrated radial velocity in the Ni
line 6768 \AA. We also characterize the relation between the velocity and the
local magnetic field to interpret our results. We obtain a stronger redshift in
places where the local magnetic field is larger (and as a consequence for
larger magnetic structures): hence we find a higher attenuation of the
convective blueshift in plages than in the network. Our results are compatible
with an attenuation of this blueshift by about 50% when averaged over plages
and network. We obtain an integrated radial velocity with an amplitude over the
solar cycle of about 8 m/s, with small-scale variations similar to the results
of the simulation, once they are scaled to the Ni line. The observed solar
integrated radial velocity agrees with the result of the simulation made in our
previous work within 30%, which validates this simulation. The observed
amplitude confirms that the impact of the convective blueshift attenuation in
magnetic regions will be critical to detect Earth-mass planets in the habitable
zone around solar-like stars.Comment: 17 pages, 11 figures, accepted in Astronomy and Astrophysic
A State-of-the-art Integrated Transportation Simulation Platform
Nowadays, universities and companies have a huge need for simulation and
modelling methodologies. In the particular case of traffic and transportation,
making physical modifications to the real traffic networks could be highly
expensive, dependent on political decisions and could be highly disruptive to
the environment. However, while studying a specific domain or problem,
analysing a problem through simulation may not be trivial and may need several
simulation tools, hence raising interoperability issues. To overcome these
problems, we propose an agent-directed transportation simulation platform,
through the cloud, by means of services. We intend to use the IEEE standard HLA
(High Level Architecture) for simulators interoperability and agents for
controlling and coordination. Our motivations are to allow multiresolution
analysis of complex domains, to allow experts to collaborate on the analysis of
a common problem and to allow co-simulation and synergy of different
application domains. This paper will start by presenting some preliminary
background concepts to help better understand the scope of this work. After
that, the results of a literature review is shown. Finally, the general
architecture of a transportation simulation platform is proposed
- …
