2,244,846 research outputs found

    On the characteristic of integral point sets in Em\mathbb{E}^m

    Get PDF
    We generalise the definition of the characteristic of an integral triangle to integral simplices and prove that each simplex in an integral point set has the same characteristic. This theorem is used for an efficient construction algorithm for integral point sets. Using this algorithm we are able to provide new exact values for the minimum diameter of integral point sets.Comment: 9 pages, 1 figur

    The stepwise path integral of the relativistic point particle

    Full text link
    In this paper we present a stepwise construction of the path integral over relativistic orbits in Euclidean spacetime. It is shown that the apparent problems of this path integral, like the breakdown of the naive Chapman-Kolmogorov relation, can be solved by a careful analysis of the overcounting associated with local and global symmetries. Based on this, the direct calculation of the quantum propagator of the relativistic point particle in the path integral formulation results from a simple and purely geometric construction.Comment: 10 pages, 5 figure

    Integral point sets over finite fields

    Get PDF
    We consider point sets in the affine plane Fq2\mathbb{F}_q^2 where each Euclidean distance of two points is an element of Fq\mathbb{F}_q. These sets are called integral point sets and were originally defined in mm-dimensional Euclidean spaces Em\mathbb{E}^m. We determine their maximal cardinality I(Fq,2)\mathcal{I}(\mathbb{F}_q,2). For arbitrary commutative rings R\mathcal{R} instead of Fq\mathbb{F}_q or for further restrictions as no three points on a line or no four points on a circle we give partial results. Additionally we study the geometric structure of the examples with maximum cardinality.Comment: 22 pages, 4 figure
    corecore