24,617 research outputs found

    A systematic construction of completely integrable Hamiltonians from coalgebras

    Full text link
    A universal algorithm to construct N-particle (classical and quantum) completely integrable Hamiltonian systems from representations of coalgebras with Casimir element is presented. In particular, this construction shows that quantum deformations can be interpreted as generating structures for integrable deformations of Hamiltonian systems with coalgebra symmetry. In order to illustrate this general method, the so(2,1)so(2,1) algebra and the oscillator algebra h4h_4 are used to derive new classical integrable systems including a generalization of Gaudin-Calogero systems and oscillator chains. Quantum deformations are then used to obtain some explicit integrable deformations of the previous long-range interacting systems and a (non-coboundary) deformation of the (1+1)(1+1) Poincar\'e algebra is shown to provide a new Ruijsenaars-Schneider-like Hamiltonian.Comment: 26 pages, LaTe

    PT-symmetric deformations of integrable models

    Get PDF
    We review recent results on new physical models constructed as PT-symmetrical deformations or extensions of different types of integrable models. We present non-Hermitian versions of quantum spin chains, multi-particle systems of Calogero-Moser-Sutherland type and non-linear integrable field equations of Korteweg-de-Vries type. The quantum spin chain discussed is related to the first example in the series of the non-unitary models of minimal conformal field theories. For the Calogero-Moser-Sutherland models we provide three alternative deformations: A complex extension for models related to all types of Coxeter/Weyl groups; models describing the evolution of poles in constrained real valued field equations of non linear integrable systems and genuine deformations based on antilinearly invariant deformed root systems. Deformations of complex nonlinear integrable field equations of KdV-type are studied with regard to different kinds of PT-symmetrical scenarios. A reduction to simple complex quantum mechanical models currently under discussion is presented.Comment: 21 pages, 3 figure

    Dispersionless integrable equations as coisotropic deformations. Extensions and reductions

    Full text link
    Interpretation of dispersionless integrable hierarchies as equations of coisotropic deformations for certain algebras and other algebraic structures like Jordan triple systInterpretation of dispersionless integrable hierarchies as equations of coisotropic deformations for certain algebras and other algebraic structures like Jordan triple systems is discussed. Several generalizations are considered. Stationary reductions of the dispersionless integrable equations are shown to be connected with the dynamical systems on the plane completely integrable on a fixed energy level. ems is discussed. Several generalizations are considered. Stationary reductions of the dispersionless integrable equations are shown to be connected with the dynamical systems on the plane completely integrable on a fixed energy level.Comment: 21 pages, misprints correcte

    dbar-equations, integrable deformations of quasiconformal mappings and Whitham hierarchy

    Get PDF
    It is shown that the dispersionless scalar integrable hierarchies and, in general, the universal Whitham hierarchy are nothing but classes of integrable deformations of quasiconformal mappings on the plane. Examples of deformations of quasiconformal mappings associated with explicit solutions of the dispersionless KP hierarchy are presented.Comment: 13 pages, LaTe

    Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality

    Full text link
    We study integrable deformations of sine-Liouville conformal field theory. Every integrable perturbation of this model is related to the series of quantum integrals of motion (hierarchy). We construct the factorized scattering matrices for different integrable perturbed conformal field theories. The perturbation theory, Bethe ansatz technique, renormalization group and methods of perturbed conformal field theory are applied to show that all integrable deformations of sine-Liouville model possess non-trivial duality properties

    The exact CC-function in integrable λ\lambda-deformed theories

    Full text link
    By employing CFT techniques, we show how to compute in the context of \lambda-deformations of current algebras and coset CFTs the exact in the deformation parameters C-function for a wide class of integrable theories that interpolate between a UV and an IR point. We explicitly consider RG flows for integrable deformations of left-right asymmetric current algebras and coset CFTs. In all cases, the derived exact C-functions obey all the properties asserted by Zamolodchikov's c-theorem in two-dimensions.Comment: v1: 1+15 pages, Latex, v2: PLB version, v3: Correcting a typo in footnote

    Factorization of the current algebra and integrable top-like systems

    Full text link
    A hierarchy of integrable hamiltonian nonlinear ODEs is associated with any decomposition of the Lie algebra of Laurent series with coefficients being elements of a semi-simple Lie algebra into a sum of the subalgebra consisting of the Taylor series and some complementary subalgebra. In the case of the Lie algebra so(3)so(3) our scheme covers all classical integrable cases in the Kirchhoff problem of the motion of a rigid body in an ideal fluid. Moreover, the construction allows us to generate integrable deformations for known integrable models.Comment: 21 page
    corecore