101,136 research outputs found
Integrability of oscillatory functions on local fields: transfer principles
For oscillatory functions on local fields coming from motivic exponential
functions, we show that integrability over implies integrability over
for large , and vice versa. More generally, the integrability
only depends on the isomorphism class of the residue field of the local field,
once the characteristic of the residue field is large enough. This principle
yields general local integrability results for Harish-Chandra characters in
positive characteristic as we show in other work. Transfer principles for
related conditions such as boundedness and local integrability are also
obtained. The proofs rely on a thorough study of loci of integrability, to
which we give a geometric meaning by relating them to zero loci of functions of
a specific kind.Comment: 44 page
Different types of integrability and their relation to decoherence in central spin models
We investigate the relation between integrability and decoherence in central
spin models with more than one central spin. We show that there is a transition
between integrability ensured by the Bethe ansatz and integrability ensured by
complete sets of commuting operators. This has a significant impact on the
decoherence properties of the system, suggesting that it is not necessarily
integrability or nonintegrability which is related to decoherence, but rather
its type or a change from integrability to nonintegrability.Comment: 4 pages, 3 figure
Geometrical aspects of integrable systems
We review some basic theorems on integrability of Hamiltonian systems, namely
the Liouville-Arnold theorem on complete integrability, the Nekhoroshev theorem
on partial integrability and the Mishchenko-Fomenko theorem on noncommutative
integrability, and for each of them we give a version suitable for the
noncompact case. We give a possible global version of the previous local
results, under certain topological hypotheses on the base space. It turns out
that locally affine structures arise naturally in this setting.Comment: It will appear on International Journal of Geometric Methods in
Modern Physics vol.5 n.3 (May 2008) issu
On the integrability of a new lattice equation found by multiple scale analysis
In this paper we discuss the integrability properties of a nonlinear partial
difference equation on the square obtained by the multiple scale integrability
test from a class of multilinear dispersive equations defined on a four points
lattice
Integrability and level crossing manifolds in a quantum Hamiltonian system
We consider a two-spin model, represented classically by a nonlinear
autonomous Hamiltonian system with two degrees of freedom and a nontrivial
integrability condition, and quantum mechanically by a real symmetric
Hamiltonian matrix with blocks of dimensionalities K=l(l+1)/2, l=1,2,... In the
six-dimensional (6D) parameter space of this model, classical integrability is
satisfied on a 5D hypersurface, and level crossings occur on 4D manifolds that
are completely embedded in the integrability hypersurface except for some
lower-D sub-manifolds. Under mild assumptions, the classical integrability
condition can be reconstructed from a purely quantum mechanical study of level
degeneracies in finite-dimensional invariant blocks of the Hamiltonian matrix.
Our conclusions are based on rigorous results for K=3 and on numerical results
for K=6,10.Comment: 8 pages, 3 figure
- …
