334,531 research outputs found

    Mixed-integer Quadratic Programming is in NP

    Full text link
    Mixed-integer quadratic programming is the problem of optimizing a quadratic function over points in a polyhedral set where some of the components are restricted to be integral. In this paper, we prove that the decision version of mixed-integer quadratic programming is in NP, thereby showing that it is NP-complete. This is established by showing that if the decision version of mixed-integer quadratic programming is feasible, then there exists a solution of polynomial size. This result generalizes and unifies classical results that quadratic programming is in NP and integer linear programming is in NP

    An exact method for a discrete multiobjective linear fractional optimization

    Get PDF
    Integer linear fractional programming problem with multiple objective MOILFP is an important field of research and has not received as much attention as did multiple objective linear fractional programming. In this work, we develop a branch and cut algorithm based on continuous fractional optimization, for generating the whole integer efficient solutions of the MOILFP problem. The basic idea of the computation phase of the algorithm is to optimize one of the fractional objective functions, then generate an integer feasible solution. Using the reduced gradients of the objective functions, an efficient cut is built and a part of the feasible domain not containing efficient solutions is truncated by adding this cut. A sample problem is solved using this algorithm, and the main practical advantages of the algorithm are indicated.multiobjective programming, integer programming, linear fractional programming, branch and cut

    Nonlinear Integer Programming

    Full text link
    Research efforts of the past fifty years have led to a development of linear integer programming as a mature discipline of mathematical optimization. Such a level of maturity has not been reached when one considers nonlinear systems subject to integrality requirements for the variables. This chapter is dedicated to this topic. The primary goal is a study of a simple version of general nonlinear integer problems, where all constraints are still linear. Our focus is on the computational complexity of the problem, which varies significantly with the type of nonlinear objective function in combination with the underlying combinatorial structure. Numerous boundary cases of complexity emerge, which sometimes surprisingly lead even to polynomial time algorithms. We also cover recent successful approaches for more general classes of problems. Though no positive theoretical efficiency results are available, nor are they likely to ever be available, these seem to be the currently most successful and interesting approaches for solving practical problems. It is our belief that the study of algorithms motivated by theoretical considerations and those motivated by our desire to solve practical instances should and do inform one another. So it is with this viewpoint that we present the subject, and it is in this direction that we hope to spark further research.Comment: 57 pages. To appear in: M. J\"unger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G. Rinaldi, and L. Wolsey (eds.), 50 Years of Integer Programming 1958--2008: The Early Years and State-of-the-Art Surveys, Springer-Verlag, 2009, ISBN 354068274

    Tools for reformulating logical forms into zero-one mixed integer programs (MIPS)

    Get PDF
    A systematic procedure for transforming a set of logical statements or logical conditions imposed on a model into an Integer Linear Programming (ILP) formulation or a Mixed Integer Programming (MIP) formulation is presented. A reformulation procedure which uses the extended reverse polish representation of a compound logical form is then described. A prototype user interface by which logical forms can be reformulated and the corresponding MIP constructed and analysed within an existing Mathematical Programming modelling system is illustrated. Finally, the steps to formulate a discrete optimisation model in this way are demonstrated by means of an example

    Mixed integer predictive control and shortest path reformulation

    Get PDF
    Mixed integer predictive control deals with optimizing integer and real control variables over a receding horizon. The mixed integer nature of controls might be a cause of intractability for instances of larger dimensions. To tackle this little issue, we propose a decomposition method which turns the original nn-dimensional problem into nn indipendent scalar problems of lot sizing form. Each scalar problem is then reformulated as a shortest path one and solved through linear programming over a receding horizon. This last reformulation step mirrors a standard procedure in mixed integer programming. The approximation introduced by the decomposition can be lowered if we operate in accordance with the predictive control technique: i) optimize controls over the horizon ii) apply the first control iii) provide measurement updates of other states and repeat the procedure
    corecore