5,304,959 research outputs found
A quasi-elastic regime for vibrated granular gases
Using simple scaling arguments and two-dimensional numerical simulations of a
granular gas excited by vibrating one of the container boundaries, we study a
double limit of small and large , where is the restitution
coefficient and the size of the container. We show that if the particle
density and where is the particle diameter, are
kept constant and small enough, the granular temperature, i.e. the mean value
of the kinetic energy per particle, , tends to a constant whereas the
mean dissipated power per particle, , decreases like when
increases, provided that . The relative fluctuations
of , and the power injected by the moving boundary, , have simple
properties in that regime. In addition, the granular temperature can be
determined from the fluctuations of the power injected by the moving
boundary.
Recommended from our members
Comparing instance-averaging with instance-saving learning algorithms
The goal of our research is to understand the power and appropriateness of instance-based representations and their associated acquisition methods. This paper concerns two methods for reducing storage requirements for instance-based learning algorithms. The first method, termed instance-saving, represents concept descriptions by selecting and storing a representative subset of the given training instances. We provide an analysis for instance-saving techniques and specify one general class of concepts that instance-saving algorithms are capable of learning. The second method, termed instance-averaging, represents concept descriptions by averaging together some training instances while simply saving others. We describe why analyses for instance-averaging algorithms are difficult to produce. Our empirical results indicate that storage requirements for these two methods are roughly equivalent. We outline the assumptions of instance-averaging algorithms and describe how their violation might degrade performance. To mitigate the effects of non-convex concepts, a dynamic thresholding technique is introduced and applied in both the averaging and non-averaging learning algorithms. Thresholding increases the storage requirements but also increases the quality of the resulting concept descriptions
Algorithm Instance Games
This paper introduces algorithm instance games (AIGs) as a conceptual
classification applying to games in which outcomes are resolved from joint
strategies algorithmically. For such games, a fundamental question asks: How do
the details of the algorithm's description influence agents' strategic
behavior?
We analyze two versions of an AIG based on the set-cover optimization
problem. In these games, joint strategies correspond to instances of the
set-cover problem, with each subset (of a given universe of elements)
representing the strategy of a single agent. Outcomes are covers computed from
the joint strategies by a set-cover algorithm. In one variant of this game,
outcomes are computed by a deterministic greedy algorithm, and the other
variant utilizes a non-deterministic form of the greedy algorithm. We
characterize Nash equilibrium strategies for both versions of the game, finding
that agents' strategies can vary considerably between the two settings. In
particular, we find that the version of the game based on the deterministic
algorithm only admits Nash equilibrium in which agents choose strategies (i.e.,
subsets) containing at most one element, with no two agents picking the same
element. On the other hand, in the version of the game based on the
non-deterministic algorithm, Nash equilibrium strategies can include agents
with zero, one, or every element, and the same element can appear in the
strategies of multiple agents.Comment: 14 page
Realistic Neutrino Masses from Multi-brane Extensions of the Randall-Sundrum Model?
Scenarios based on the existence of large or warped (Randall-Sundrum model)
extra dimensions have been proposed for addressing the long standing puzzle of
gauge hierarchy problem. Within the contexts of both those scenarios, a novel
and original type of mechanism generating small (Dirac) neutrino masses, which
relies on the presence of additional right-handed neutrinos that propagate in
the bulk, has arisen. The main objective of the present study is to determine
whether this geometrical mechanism can produce reasonable neutrino masses also
in the interesting multi-brane extensions of the Randall-Sundrum model. We
demonstrate that, in some multi-brane extensions, neutrino masses in agreement
with all relevant experimental bounds can indeed be generated but at the price
of a constraint (stronger than the existing ones) on the bulk geometry, and
that the other multi-brane models even conflict with those experimental bounds.Comment: 29 pages, 3 figures, Latex file. References added, study extende
Iterative Instance Segmentation
Existing methods for pixel-wise labelling tasks generally disregard the
underlying structure of labellings, often leading to predictions that are
visually implausible. While incorporating structure into the model should
improve prediction quality, doing so is challenging - manually specifying the
form of structural constraints may be impractical and inference often becomes
intractable even if structural constraints are given. We sidestep this problem
by reducing structured prediction to a sequence of unconstrained prediction
problems and demonstrate that this approach is capable of automatically
discovering priors on shape, contiguity of region predictions and smoothness of
region contours from data without any a priori specification. On the instance
segmentation task, this method outperforms the state-of-the-art, achieving a
mean of 63.6% at 50% overlap and 43.3% at 70% overlap.Comment: 13 pages, 10 figures; IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 201
Parity realization in Vector-like theories from Fermion Bilinears
We reconsider in this paper the old aim of trying to understand if the
observed realization of discrete symmetries as Parity or CP in the QCD vacuum
can be satisfied from first principles. We show how under the appropriate
assumptions implicitely done by Vafa and Witten in their old paper on parity
realization in vector-like theories, all parity and CP odd operators
constructed from fermion bilinears of the form should
take a vanishing vacuum expectation value in a vector-like theory with N
degenerate flavours (N>1). In our analysis the Vafa-Witten theorem on the
impossibility to break spontaneously the flavour symmetry in a vector-like
theory plays a fundamental role.Comment: 12 pages, no figures To be published in JHE
- …
