413,970 research outputs found

    Import of honeybee prepromelittin into the endoplasmic reticulum

    Get PDF
    Honeybee prepromelittin is correctly processed and imported by dog pancreas microsomes. Insertion of prepromelittin into microsomal membranes, as assayed by signal sequence removal, does not depend on signal recognition particle (SRP) and docking protein. We addressed the question as to how prepromelittin bypasses the SRP/docking protein system. Hybrid proteins between prepromelittin, or carboxy-terminally truncated derivatives, and the cytoplasmic protein dihydrofolate reductase from mouse were constructed. These hybrid proteins were analysed for membrane insertion and sequestration into microsomes. The results suggest the following: (i) The signal sequence of prepromelittin is capable of interacting with the SRP/docking protein system, but this interaction is not mandatory for membrane insertion; this is related to the small size of prepromelittin. (ii) In prepromelittin a cluster of negatively charged amino acids must be balanced by a cluster of positively charged amino acids in order to allow membrane insertion. (iii) In general, a signal sequence can be sufficient to mediate membrane insertion independently of SRP and docking protein in the case of short precursor proteins; however, the presence and distribution of charged amino acids within the mature part of these precursors can play distinct roles

    Genome-wide analysis of the emigrant family of MITEs: amplification dynamics and evolution of genes in Arabidopsis thaliana

    Get PDF
    MITEs are structurally similar to defective class II elements but their high copy number and the size and sequence conservation of most MITE families suggest that they can be amplified by a replicative mechanism. Here we present a genome-wide analysis of the Emigrant family of MITEs from Arabidopsis thaliana. In order to be able to detect divergent ancient copies and low copy number subfamilies with a different internal sequence we have developed a computer program (http://www.lsi.upc.es/~alggen) that allows looking for Emigrant elements based solely on its TIR sequence. Our results show that different bursts of amplification of one or very few active, or master, elements have occurred at different times during Arabidopsis evolution, with an insertion dynamics similar to that of some SINEs. The analysis of the insertion sites of the Emigrant elements show that, although Emigrant elements tend to integrate far from ORFs, the elements inserted within or close to genes are preferentially maintained during evolution.Postprint (published version

    TranspoGene and microTranspoGene: transposed elements influence on the transcriptome of seven vertebrates and invertebrates

    Get PDF
    Transposed elements (TEs) are mobile genetic sequences. During the evolution of eukaryotes TEs were inserted into active protein-coding genes, affecting gene structure, expression and splicing patterns, and protein sequences. Genomic insertions of TEs also led to creation and expression of new functional non-coding RNAs such as micro- RNAs. We have constructed the TranspoGene database, which covers TEs located inside proteincoding genes of seven species: human, mouse, chicken, zebrafish, fruit fly, nematode and sea squirt. TEs were classified according to location within the gene: proximal promoter TEs, exonized TEs (insertion within an intron that led to exon creation), exonic TEs (insertion into an existing exon) or intronic TEs. TranspoGene contains information regarding specific type and family of the TEs, genomic and mRNA location, sequence, supporting transcript accession and alignment to the TE consensus sequence. The database also contains host gene specific data: gene name, genomic location, Swiss-Prot and RefSeq accessions, diseases associated with the gene and splicing pattern. In addition, we created microTranspoGene: a database of human, mouse, zebrafish and nematode TEderived microRNAs. The TranspoGene and micro- TranspoGene databases can be used by researchers interested in the effect of TE insertion on the eukaryotic transcriptome

    An age-of-allele test of neutrality for transposable element insertions

    Get PDF
    How natural selection acts to limit the proliferation of transposable elements (TEs) in genomes has been of interest to evolutionary biologists for many years. To describe TE dynamics in populations, many previous studies have used models of transposition-selection equilibrium that rely on the assumption of a constant rate of transposition. However, since TE invasions are known to happen in bursts through time, this assumption may not be reasonable in natural populations. Here we propose a test of neutrality for TE insertions that does not rely on the assumption of a constant transposition rate. We consider the case of TE insertions that have been ascertained from a single haploid reference genome sequence and have subsequently had their allele frequency estimated in a population sample. By conditioning on the age of an individual TE insertion (using information contained in the number of substitutions that have occurred within the TE sequence since insertion), we determine the probability distribution for the insertion allele frequency in a population sample under neutrality. Taking models of varying population size into account, we then evaluate predictions of our model against allele frequency data from 190 retrotransposon insertions sampled from North American and African populations of Drosophila melanogaster. Using this non-equilibrium model, we are able to explain about 80% of the variance in TE insertion allele frequencies based on age alone. Controlling both for nonequilibrium dynamics of transposition and host demography, we provide evidence for negative selection acting against most TEs as well as for positive selection acting on a small subset of TEs. Our work establishes a new framework for the analysis of the evolutionary forces governing large insertion mutations like TEs, gene duplications or other copy number variants.Comment: 40 pages, 6 figures, Supplemental Data available: [email protected]

    A Receptor Component of the Chloroplast Protein Translocation Machinery

    Get PDF
    The chloroplast outer envelope protein OEP86 functions as a receptor in precursor protein translocation into chloroplasts. Sequence analysis suggests that the precursor of OEP86 is directed to the chloroplast outer envelope by a cleavable, negatively charged, and unusually long amino-terminal peptide. This presequence is unlike other potential targeting signals and suggests the existence of another membrane insertion pathway. Insertion of precursor OEP86 required the hydrolysis of adenosine triphosphate and the existence of surface exposed chloroplast membrane components, and it was not competed by another precursor protein destined for the internal plastid compartments

    Digital search trees and chaos game representation

    Get PDF
    In this paper, we consider a possible representation of a DNA sequence in a quaternary tree, in which on can visualize repetitions of subwords. The CGR-tree turns a sequence of letters into a digital search tree (DST), obtained from the suffixes of the reversed sequence. Several results are known concerning the height and the insertion depth for DST built from i.i.d. successive sequences. Here, the successive inserted wors are strongly dependent. We give the asymptotic behaviour of the insertion depth and of the length of branches for the CGR-tree obtained from the suffixes of reversed i.i.d. or Markovian sequence. This behaviour turns out to be at first order the same one as in the case of independent words. As a by-product, asymptotic results on the length of longest runs in a Markovian sequence are obtained

    The nucleotide sequence of a human immnnoglobulin C-gamma-1 gene

    Get PDF
    We report the nucleotide sequence of a gene encoding the constant region of a human immnnoglobulin γ1 heavy chain (Cγ1). A comparison of this sequence with those of the Cγ2 and Cγ4 genes reveals that these three human Cγ genes share considerable homology in both coding and noncoding regions. The nucleotide sequence differences indicate that these genes diverged from one another approximately 6–8 million years ago. An examination of hinge exons shows that these coding regions have evolved more rapidly than any other areas of the Cγ genes in terms of both base substitution and deletion–insertion events. Coding sequence diversity also is observed in areas of CH domains which border the hinge

    A Solvable Sequence Evolution Model and Genomic Correlations

    Full text link
    We study a minimal model for genome evolution whose elementary processes are single site mutation, duplication and deletion of sequence regions and insertion of random segments. These processes are found to generate long-range correlations in the composition of letters as long as the sequence length is growing, i.e., the combined rates of duplications and insertions are higher than the deletion rate. For constant sequence length, on the other hand, all initial correlations decay exponentially. These results are obtained analytically and by simulations. They are compared with the long-range correlations observed in genomic DNA, and the implications for genome evolution are discussed.Comment: 4 pages, 4 figure
    corecore