96,958 research outputs found

    Effect of cow diet on the ruminal microflora and its in vitro fatty acid production

    Get PDF
    The objective of this study was to investigate the effects of donor’s cow diet (hay or maize silage plus concentrates) on ruminal bacteria count, flora diversity and fatty acids profile (FA) of ruminal fluid and in vitro biohydrogenation (BH) of C18:2. Two dry cows fitted with a ruminal canula were used in a 2x2 design. Each period included three weeks of diet adaptation and two weeks of sampling. The cows were fed twice daily either a diet (H) composed of grass (38%) and alfalfa hay (62%) or an acidogenic diet (A) composed of maize silage (38%), wheat (57%) and soybean (5%) meal. Ruminal fluid was sampled and centrifugated (150g, 5min., 39°C). The ruminal fluid (80mL) was mixed with 80mL of buffer, a fermentative substrate and grape seed oil as source of C18:2 before being incubated during 6 hours at 39°C in anaerobic and dark conditions. Biodiversity was estimated by the Simpson index modified by Haegeman et al.1 after SSCP analysis, and FA were analysed by GLC. Bacteria counting was realised according to Oblinger and Koburger2 (1975). Total and cellulolytic bacteria contents were higher in inoculum A than in inoculum H (9.3.109 vs. 2.4.108/mL for total bacteria and 2.4.108 vs. 1.6.107/mL for cellulolytic bacteria). No difference in the biodiversity of the inoculums was noticed according to the cow or the diet, but diversity during period 1 tended to differ (P=0.09) from period 2, suggesting a time variation of flora biodiversity. Before incubation, the ruminal fluid from the cow receiving diet A contained significantly (P<0.01) more C18:2, trans-10 and trans-11 C18:1, and odd-chain FA than inoculum from the cow receiving diet H. After incubation, inoculum A resulted in a significantly (P<0.01) greater BH of C18:2 than inoculum H, and produced more trans-10C18:1, trans-11C18:1 and odd-chain FA (P<0.01) Trans-10 and odd-chain FA are known to be increased by a high concentrate diet, which explains that inoculum A was richer in these FA than inoculum H. The ruminal flora selected in vivo by diet A continued the production of these FA in vitro. The greater content of trans-11C18:1 and of C18:2 in the inoculum A could be explained by the greater content in C18:2 of the diet A. During incubation with added C18:2, inoculum A continued to produce more trans-11 along with a higher C18:2 BH than inoculum H, which could be due to the higher concentration of cellulolytic bacteria in the inoculum A

    Pengaruh Berbagai Jenis Tanaman Inang dan Beberapa Jenis Sumber Inokulum terhadap Infektivitas dan Efektivitas Mikoriza

    Get PDF
    . This research aims to study the types of host plants and source of inoculum is best in the manufacture of mycorrhizal biofertilizer. The study was conducted at the home screen Unsyiah Faculty of Agriculture, Soil Biology Laboratory at USU College of Agriculture and Soil Chemistry Laboratory at the Faculty of Agriculture Unsyiah since July 2011 to November 2011. This research used randomized completely block design (RCBD) factorial with two factors and three replications. Factors studied are several types of host plants and some types of sources of inoculum. Variety of host factors consist: kudzu, soybean, and corn and factors source of inoculum consisted of: spore origin rhizosfer kudju, rhizosfer spores from soybean, and spores rhizosfer origin of maize. Variables observed in this study is the degree of mycorrhizal infection, plant P uptake. From the research results obtained can be concluded that there is interaction between host plant species with the type of source of inoculum of mycorrhizal infectivity and effectiveness. The best treatment of the parameters of the degree of mycorrhizal infection (infectivity of mycorrhizal) and plant P uptake (mycorrhizal effectiveness) is a combination of host plant kudzu to the source of spore inoculum origin rhizosfer kudzu

    Anaerobic digestate as substrate for microalgae culture: the role of ammonium concentration on the microalgae productivity

    Get PDF
    In spite of the increasing interest received by microalgae as potential alternatives for biofuel production, the technology is still not industrially viable. The utilization of digestate as carbon and nutrients source can enhance microalgal growth reducing costs and environmental impacts. This work assesses microalgal growth utilizing the liquid phase of anaerobic digestate effluent as substrate. The effect of inoculum/substrate ratio on microalgal growth was studied in a laboratory batch experiment conduced in 0.5 L flasks. Results suggested that digestate may be an effective substrate for microalgal growth promoting biomass production up to 2.6 gTSS/L. Microalgal growth rate was negatively affected by a self-shading phenomenon, while biomass production was positively correlated with the inoculum and substrate concentrations. Thus, the increasing of both digestate and microalgal initial concentration may reduce the initial growth rate (µ from 0.9 to 0.04 d-1) but significantly enhances biomass production (from 0.1 to 2.6 gTSS/L).Peer ReviewedPostprint (published version

    Sumber Inokulum, Respons Varietas, Dan Efektivitas Fungisida Terhadap Penyakit Karat Putih Pada Tanaman Kris

    Full text link
    . Suhardi. 2009. Inoculum Source, Variety Response, and Fungicide Efficacy to Rust Disease ofChrysanthemum. Studies to evaluate the role of cutting as an inoculum source, variety resistance, and fungicideapplication interval were done at Indonesian Ornamental Crops Research Institute. Survey of cutting health wascarried out at farmer's fields as seed producer on July 2002. A study under plastichouse to evaluate the response ofsome cultivars and determine the efficacy of fungicide applications was carried out from July-September 2002. Theresults indicated that cuttings were the inoculum source of rust on chrysanthemum. On individual plant, both underplastic and glasshouse, the development of white rust was suppressed. Phuma White cultivar relatively more resistantthan cv. Reagent Ungu and cv. Town Talk. Benomyl (benzimidazole) fungicide was not effective yet in controllingchrysanthemum white rust (P. horiana)

    Microbial ecosystem constructed in water for successful organic hydroponics

    Get PDF
    Conventional hydroponics systems generally use only chemical fertilisers, not organic ones, since there are no microbial ecosystems present in such systems to mineralise organic compounds to inorganic nutrients. Addition of organic compounds to the hydroponic solution generally has phytotoxic effects and causes poor plant growth. We developed a novel hydroponic culture method using organic fertiliser. A microbial ecosystem was constructed in hydroponic solution by regulating the amounts of organic fertiliser and soil, with moderate aeration. The microbial ecosystem mineralised organic nitrogen to nitrate-nitrogen via ammonification and nitrification. A 97.6% efficiency of nitrate-nitrogen generation from the organic nitrogen in the organic fertiliser was achieved. The culture solution containing the microbial ecosystem was usable as a hydroponic solution. Vegetable plants grew well in our organic hydroponics system under continuous addition of organic fertiliser, and the yield and quality approximated those of vegetables grown by conventional hydroponics

    Standardization of activated sludge for biodegradation tests

    Get PDF
    Activated sludges are an inoculum source commonly used in biodegradation studies, as wastewater treatment facilities constitute an entry point to the environment for many chemicals. In this paper, the main issues relating to the use of activated sludge in biodegradability tests are presented. Special attention is also devoted to discussing the factors affecting both the activity of the microbial communities and the test results. After a short survey of the state of the art of microbiology of activated sludge, the paper focuses on the methods used to reduce the variations in the diversity, quality and quantity of these communities. Finally, use of surrogates as reference materials in biodegradability tests is discussed
    corecore