7,616 research outputs found
New Synthetic Endocannabinoid as Anti-Inflammaging Cosmetic Active: an In Vitro Study on a Reconstructed Skin Model
Endocannabinoids have been recently appointed as interesting cosmetic actives in regulating inflammaging, a state of chronic low-grade inflammation, known for being involved in many senescence\u2019s manifestations, included skin aging. The aim of this study was to assess the anti-inflammaging activity of a new synthetic endocannabinoid, Isopalmide\uae, on a reconstructed skin model, on which inflammaging has been reproduced through UVA radiation and light mechanical stress. We tested Isopalmide\uae both as a single active and conveyed in a cosmetic product, in comparison with Anandamide, a well-known natural endocannabinoid with anti-inflammatory action. The anti-inflammaging activity of topically applied products has been assessed, after 6 hours of treatment post-irradiation, through the transcriptional modification of genes involved in the NF-\u3baB pathway and the epigenetic pathway targeting miRs as potential biomarkers of inflammaging: miR-21, miR-126 and miR-146a. The results confirmed the anti-inflammatory action of Anandamide which inhibits NF-\u3baB, while Isopalmide\uae showed its anti-inflammaging activity through the establishment of an inflammatory/anti-inflammatory balance by maintaining NF-\u3baB inactive in the cytoplasm and active in the nucleus. The anti-inflammaging activity was shown also by the cosmetic product containing Isopalmide
Nutrition, diet and immunosenescence
Ageing is characterized by immunosenescence and the progressive decline in immunity in association with an increased frequency of infections and chronic disease. This complex process affects both the innate and adaptive immune systems with a progressive decline in most immune cell populations and defects in activation resulting in loss of function. Although host genetics and environmental factors, such as stress, exercise and diet can impact on the onset or course of immunosenescence, the mechanisms involved are largely unknown. This review focusses on identifying the most significant aspects of immunosenescence and on the evidence that nutritional intervention might delay this process, and consequently improve the quality of life of the elderly
Recommended from our members
Could Inflammaging and Its Sequelae Be Prevented or Mitigated?
Aged humans display a chronic and low-grade inflammation, termed "inflammaging", which has been potentially linked to the subsequent development of some aging-associated systemic disorders, including type 2 diabetes, atherosclerotic cardiovascular disease, Alzheimer's disease and obesity. Though the origin of aging-associated systemic inflammation is uncertain, epidemiological studies show that inflammatory dermatoses (psoriasis and eczema) are risk factors for some aging-associated systemic disorders, such as type 2 diabetes and atherosclerotic cardiovascular disease. Moreover, recent studies demonstrate that epidermal dysfunction in aged skin not only causes cutaneous inflammation, but also a subsequent increase in circulating levels of proinflammatory cytokines, suggesting that the skin could be a major contributor to inflammaging. This hypothesis is further supported by reductions in circulating levels of proinflammatory cytokines in both aged humans and murine, following improvements in epidermal function with topical emollients. Therefore, correction of epidermal dysfunction could be a novel approach for the prevention and mitigation of certain inflammation-associated chronic disorders in aged humans
Inflammaging and cardiovascular disease: Management by medicinal plants
Background In aging, a host of molecular and cellular changes occur which accelerate alteration and progression of inflammatory diseases. These conditions in the elderly people cause appearance of a phenomenon which has been denoted as “inflammaging”. Understanding the pathogenesis and finding new methods for management of inflammaging are essential. Purpose In this paper we tried not only to explain inflammaging and its treatments with concentrating on medical plants but to collect a sufficient collection of anti-inflammatory plants with focusing on their mechanism of action. Method In this review paper, by searching in indexing cites, desired articles were obtained since 1995 by using keywords of inflammation, inflammaging, inflammation pathophysiology, free radicals and inflammation, aging inflammation, inflammatory disease, and plants or herbal medicine in inflammation. Sections In advanced age the generation of free radicals increases in cardiovascular system. Pathological inflammation is also associated with production of excess free radicals More importantly, chronic inflammation makes aged people susceptible to age-related diseases. Some medicinal plants have been shown promising results in inhibition of inflammaging. Some other sections such as inflammation and inflammaging in cardiovascular diseases, oxidative stress in cardiovascular complications, prevention and treatment strategies are presented. Conclusion The results of published papers show that the symptoms of several inflammatory diseases can be inhibited or treated by active ingredients from medicinal plants
The stress polarity signaling (SPS) pathway serves as a marker and a target in the leaky gut barrier: implications in aging and cancer.
The gut barrier separates trillions of microbes from the largest immune system in the body; when compromised, a "leaky" gut barrier fuels systemic inflammation, which hastens the progression of chronic diseases. Strategies to detect and repair the leaky gut barrier remain urgent and unmet needs. Recently, a stress-polarity signaling (SPS) pathway has been described in which the metabolic sensor, AMP-kinase acts via its effector, GIV (also known as Girdin) to augment epithelial polarity exclusively under energetic stress and suppresses tumor formation. Using murine and human colon-derived organoids, and enteroid-derived monolayers (EDMs) that are exposed to stressors, we reveal that the SPS-pathway is active in the intestinal epithelium and requires a catalytically active AMP-kinase. Its pharmacologic augmentation resists stress-induced collapse of the epithelium when challenged with microbes or microbial products. In addition, the SPS-pathway is suppressed in the aging gut, and its reactivation in enteroid-derived monolayers reverses aging-associated inflammation and loss of barrier function. It is also silenced during progression of colorectal cancers. These findings reveal the importance of the SPS-pathway in the gut and highlights its therapeutic potential for treating gut barrier dysfunction in aging, cancer, and dysbiosis
Serum Biochemical Phenotypes in the Domestic Dog
The serum or plasma biochemical profile is essential in the diagnosis and monitoring of systemic disease in veterinary medicine, but current reference intervals typically take no account of breed-specific differences. Breed-specific hematological phenotypes have been documented in the domestic dog, but little has been published on serum biochemical phenotypes in this species. Serum biochemical profiles of dogs in which all measurements fell within the existing reference intervals were retrieved from a large veterinary database. Serum biochemical profiles from 3045 dogs were retrieved, of which 1495 had an accompanying normal glucose concentration. Sixty pure breeds plus a mixed breed control group were represented by at least 10 individuals. All analytes, except for sodium, chloride and glucose, showed variation with age. Total protein, globulin, potassium, chloride, creatinine, cholesterol, total bilirubin, ALT, CK, amylase, and lipase varied between sexes. Neutering status significantly impacted all analytes except albumin, sodium, calcium, urea, and glucose. Principal component analysis of serum biochemical data revealed 36 pure breeds with distinctive phenotypes. Furthermore, comparative analysis identified 23 breeds with significant differences from the mixed breed group in all biochemical analytes except urea and glucose. Eighteen breeds were identified by both principal component and comparative analysis. Tentative reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis and represented by at least 120 individuals. This is the first large-scale analysis of breed-specific serum biochemical phenotypes in the domestic dog and highlights potential genetic components of biochemical traits in this species
Inflammation and premature aging in advanced chronic kidney disease
Systemic inflammation in end-stage renal disease (ESRD) is an established risk factor for mortality and a catalyst for other complications which are related to a premature aging phenotype, including muscle wasting, vascular calcification and other forms of premature vascular disease, depression, osteoporosis and frailty. Uremic inflammation is also mechanistically related to mechanisms involved in the aging process, such as telomere shortening, mitochondrial dysfunction, and altered nutrient sensing, which can have direct effect on cellular and tissue function. In addition to uremia-specific causes such as abnormalities in the phosphate- Klotho axis, there are remarkable similarities between the pathophysiology of uremic inflammation and so-called "inflammaging" in the general population. Potentially relevant, but still somewhat unexplored in this respect are abnormal or misplaced protein structures as well as abnormalities in tissue homeostasis, which evoke danger signals through damage associated molecular patters (DAMPS) as well as the senescence associated secretory phenotype (SASP). Systemic inflammation, in combination with the loss of kidney function, can impair the resilience of the body to external and internal stressors by reduced functional and structural tissue reserve, and by impairing normal organ crosstalk, thus providing an explanation for the greatly increased risk of homeostatic breakdown in this population. In this review, the relation between uremic inflammation and a premature aging phenotype, as well as potential causes and consequences are discussed
Recommended from our members
Klotho controls the brain-immune system interface in the choroid plexus.
Located within the brain's ventricles, the choroid plexus produces cerebrospinal fluid and forms an important barrier between the central nervous system and the blood. For unknown reasons, the choroid plexus produces high levels of the protein klotho. Here, we show that these levels naturally decline with aging. Depleting klotho selectively from the choroid plexus via targeted viral vector-induced knockout in Klotho flox/flox mice increased the expression of multiple proinflammatory factors and triggered macrophage infiltration of this structure in young mice, simulating changes in unmanipulated old mice. Wild-type mice infected with the same Cre recombinase-expressing virus did not show such alterations. Experimental depletion of klotho from the choroid plexus enhanced microglial activation in the hippocampus after peripheral injection of mice with lipopolysaccharide. In primary cultures, klotho suppressed thioredoxin-interacting protein-dependent activation of the NLRP3 inflammasome in macrophages by enhancing fibroblast growth factor 23 signaling. We conclude that klotho functions as a gatekeeper at the interface between the brain and immune system in the choroid plexus. Klotho depletion in aging or disease may weaken this barrier and promote immune-mediated neuropathogenesis
Siglec receptors impact mammalian lifespan by modulating oxidative stress.
Aging is a multifactorial process that includes the lifelong accumulation of molecular damage, leading to age-related frailty, disability and disease, and eventually death. In this study, we report evidence of a significant correlation between the number of genes encoding the immunomodulatory CD33-related sialic acid-binding immunoglobulin-like receptors (CD33rSiglecs) and maximum lifespan in mammals. In keeping with this, we show that mice lacking Siglec-E, the main member of the CD33rSiglec family, exhibit reduced survival. Removal of Siglec-E causes the development of exaggerated signs of aging at the molecular, structural, and cognitive level. We found that accelerated aging was related both to an unbalanced ROS metabolism, and to a secondary impairment in detoxification of reactive molecules, ultimately leading to increased damage to cellular DNA, proteins, and lipids. Taken together, our data suggest that CD33rSiglecs co-evolved in mammals to achieve a better management of oxidative stress during inflammation, which in turn reduces molecular damage and extends lifespan
Recommended from our members
Differences in Proinflammatory Cytokines and Monocyte Subtypes in Older as Compared With Younger Kidney Transplant Recipients.
Background:The number of elderly patients with end-stage kidney disease requiring kidney transplantation continues to grow. Evaluation of healthy older adults has revealed proinflammatory changes in the immune system, which are posited to contribute to age-associated illnesses via "inflamm-aging." Immunologic dysfunction is also associated with impaired control of infections. Whether these immunologic changes are found in older kidney transplant recipients is not currently known, but may have important implications for risk for adverse clinical outcomes. Methods:Three months after transplant, innate immune phenotype was evaluated by flow cytometry from 60 kidney transplant recipients (22 older [≥60 years] and 38 younger [<60 years old]). Multiplex cytokine testing was used to evaluate plasma cytokine levels. Younger patients were matched to older patients based on transplant type and induction immune suppression. Results:Older kidney transplant recipients demonstrated decreased frequency of intermediate monocytes (CD14++CD16+) compared with younger patients (1.2% vs 3.3%, P = 0.007), and a trend toward increased frequency of proinflammatory classical monocytes (CD14++CD16-) (94.5% vs 92.1%) (P = 0.065). Increased levels of interferon-gamma (IFN-γ) were seen in older patients. Conclusions:In this pilot study of kidney transplant recipients, we identified differences in the innate immune system in older as compared with younger patients, including increased levels of IFN-γ. This suggests that age-associated nonspecific inflammation persists despite immune suppression. The ability to apply noninvasive testing to transplant recipients will provide tools for patient risk stratification and individualization of immune suppression regimens to improve outcomes after transplantation
- …
