1,076,112 research outputs found

    Iterative Amortized Inference

    Get PDF
    Inference models are a key component in scaling variational inference to deep latent variable models, most notably as encoder networks in variational auto-encoders (VAEs). By replacing conventional optimization-based inference with a learned model, inference is amortized over data examples and therefore more computationally efficient. However, standard inference models are restricted to direct mappings from data to approximate posterior estimates. The failure of these models to reach fully optimized approximate posterior estimates results in an amortization gap. We aim toward closing this gap by proposing iterative inference models, which learn to perform inference optimization through repeatedly encoding gradients. Our approach generalizes standard inference models in VAEs and provides insight into several empirical findings, including top-down inference techniques. We demonstrate the inference optimization capabilities of iterative inference models and show that they outperform standard inference models on several benchmark data sets of images and text.Comment: International Conference on Machine Learning (ICML) 201

    Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

    Full text link
    It is desirable to train convolutional networks (CNNs) to run more efficiently during inference. In many cases however, the computational budget that the system has for inference cannot be known beforehand during training, or the inference budget is dependent on the changing real-time resource availability. Thus, it is inadequate to train just inference-efficient CNNs, whose inference costs are not adjustable and cannot adapt to varied inference budgets. We propose a novel approach for cost-adjustable inference in CNNs - Stochastic Downsampling Point (SDPoint). During training, SDPoint applies feature map downsampling to a random point in the layer hierarchy, with a random downsampling ratio. The different stochastic downsampling configurations known as SDPoint instances (of the same model) have computational costs different from each other, while being trained to minimize the same prediction loss. Sharing network parameters across different instances provides significant regularization boost. During inference, one may handpick a SDPoint instance that best fits the inference budget. The effectiveness of SDPoint, as both a cost-adjustable inference approach and a regularizer, is validated through extensive experiments on image classification
    • …
    corecore