1,708,675 research outputs found
Effects of Sex and Gender on Adaptation to Space: Musculoskeletal Health
There is considerable variability among individuals in musculoskeletal response to long-duration spaceflight. The specific origin of the individual variability is unknown but is almost certainly influenced by the details of other mission conditions such as individual differences in exercise countermeasures, particularly intensity of exercise, dietary intake, medication use, stress, sleep, psychological profiles, and actual mission task demands. In addition to variations in mission conditions, genetic differences may account for some aspect of individual variability. Generally, this individual variability exceeds the variability between sexes that adds to the complexity of understanding sex differences alone. Research specifically related to sex differences of the musculoskeletal system during unloading is presented and discussed
Modelling individual variability in cognitive development
Investigating variability in reasoning tasks can provide insights into key issues in the study of cognitive development. These include the mechanisms that underlie developmental transitions, and the distinction between individual differences and developmental disorders. We explored the mechanistic basis of variability in two connectionist models of cognitive development, a model of the Piagetian balance scale task (McClelland, 1989) and a model of the Piagetian conservation task (Shultz, 1998). For the balance scale task, we began with a simple feed-forward connectionist model and training patterns based on McClelland (1989). We investigated computational parameters, problem encodings, and training environments that contributed to variability in development, both across groups and within individuals. We report on the parameters that affect the complexity of reasoning and the nature of ‘rule’ transitions exhibited by networks learning to reason about balance scale problems. For the conservation task, we took the task structure and problem encoding of Shultz (1998) as our base model. We examined the computational parameters, problem encodings, and training environments that contributed to variability in development, in particular examining the parameters that affected the emergence of abstraction. We relate the findings to existing cognitive theories on the causes of individual differences in development
Sex differences in variability across timescales in BALB/c mice.
BackgroundFemales are markedly underinvestigated in the biological and behavioral sciences due to the presumption that cyclic hormonal changes across the ovulatory cycle introduce excess variability to measures of interest in comparison to males. However, recent analyses indicate that male and female mice and rats exhibit comparable variability across numerous physiological and behavioral measures, even when the stage of the estrous cycle is not considered. Hormonal changes across the ovulatory cycle likely contribute cyclic, intra-individual variability in females, but the source(s) of male variability has, to our knowledge, not been investigated. It is unclear whether male variability, like that of females, is temporally structured and, therefore, quantifiable and predictable. Finally, whether males and females exhibit variability on similar time scales has not been explored.MethodsThese questions were addressed by collecting chronic, high temporal resolution locomotor activity (LA) and core body temperature (CBT) data from male and female BALB/c mice.ResultsContrary to expectation, males are more variable than females over the course of the day (diel variability) and exhibit higher intra-individual daily range than females in both LA and CBT. Between mice of a given sex, variability is comparable for LA but the inter-individual daily range in CBT is greater for males. To identify potential rhythmic processes contributing to these sex differences, we employed wavelet transformations across a range of periodicities (1-39 h).ConclusionsAlthough variability in circadian power is comparable between the sexes for both LA and CBT, infradian variability is greater in females and ultradian variability is greater in males. Thus, exclusion of female mice from studies because of estrous cycle variability may increase variance in investigations where only male measures are collected over a span of several hours and limit generalization of findings from males to females
Intra-individual movement variability during skill transitions: A useful marker?
Applied research suggests athletes and coaches need to be challenged in knowing when and how much a movement should be consciously attended to. This is exacerbated when the skill is in transition between two more stable states, such as when an already well learnt skill is being refined. Using existing theory and research, this paper highlights the potential application of movement variability as a tool to inform a coach’s decision-making process when implementing a systematic approach to technical refinement. Of particular interest is the structure of co-variability between mechanical degrees-of-freedom (e.g., joints) within the movement system’s entirety when undergoing a skill transition. Exemplar data from golf are presented, demonstrating the link between movement variability and mental effort as an important feature of automaticity, and thus intervention design throughout the different stages of refinement. Movement variability was shown to reduce when mental effort directed towards an individual aspect of the skill was high (target variable). The opposite pattern was apparent for variables unrelated to the technical refinement. Therefore, two related indicators, movement variability and mental effort, are offered as a basis through which the evaluation of automaticity during technical refinements may be made
Variability of North Atlantic hurricanes: seasonal versus individual-event features
Tropical cyclones are affected by a large number of climatic factors, which
translates into complex patterns of occurrence. The variability of annual
metrics of tropical-cyclone activity has been intensively studied, in
particular since the sudden activation of the N Atl in the mid 1990's. We
provide first a swift overview on previous work by diverse authors about these
annual metrics for the NAtl basin, where the natural variability of the
phenomenon, the existence of trends, the drawbacks of the records, and the
influence of global warming have been the subject of interesting debates. Next,
we present an alternative approach that does not focus on seasonal features but
on the characteristics of single events [Corral et al Nature Phys 6, 693,
2010]. It is argued that the individual-storm power dissipation index (PDI)
constitutes a natural way to describe each event, and further, that the PDI
statistics yields a robust law for the occurrence of tropical cyclones in terms
of a power law. In this context, methods of fitting these distributions are
discussed. As an important extension to this work we introduce a distribution
function that models the whole range of the PDI density (excluding
incompleteness effects at the smallest values), the gamma distribution,
consisting in a power-law with an exponential decay at the tail. The
characteristic scale of this decay, represented by the cutoff parameter,
provides very valuable information on the finiteness size of the basin, via the
largest values of the PDIs that the basin can sustain. We use the gamma fit to
evaluate the influence of sea surface temperature (SST) on the occurrence of
extreme PDI values, for which we find an increase around 50 % in the values of
these basin-wide events for a 0.49 degC SST average difference. ...Comment: final version available soon in the 1st author's web,
http://www.crm.cat/Researchers/acorral/Pages/PersonalInformation.asp
X-ray variability of AGNs in the soft and the hard X-ray bands
We investigate the X-ray variability characteristics of hard X-ray selected
AGNs (based on Swift/BAT data) in the soft X-ray band using the RXTE/ASM data.
The uncertainties involved in the individual dwell measurements of ASM are
critically examined and a method is developed to combine a large number of
dwells with appropriate error propagation to derive long duration flux
measurements (greater than 10 days). We also provide a general prescription to
estimate the errors in variability derived from rms values from unequally
spaced data. Though the derived variability for individual sources are not of
very high significance, we find that, in general, the soft X-ray variability is
higher than those in hard X-rays and the variability strengths decrease with
energy for the diverse classes of AGN. We also examine the strength of
variability as a function of the break time scale in the power density spectrum
(derived from the estimated mass and bolometric luminosity of the sources) and
find that the data are consistent with the idea of higher variability at time
scales longer than the break time scale.Comment: 17 pages, 15 Postscript figures, 3 tables, accepted for publication
in Ap
Intra-individual variation in children\u27s physical activity patterns: Implications for measurement
Children\u27s physical activity (PA) patterns change form day to day. This intra-individual variability affects precision when measuring key physical activity and sedentary behavior variables. This paper discusses strategies to reduce the random error associated with intra-individual variability and demonstrates the implications for assessing PA when varying number of days are sampled. Self-reported data collected on two hundred and ninety eight 13- to 14-year-olds were used to compare estimates of PA and sedentary behaviour derived from between 1 and 7 days of recall data. Large intra-individual coefficients of variation were calculated for physical activity level (14.5%), moderate-to-vigorous physical activity (83.4%), screen time (60.8%) and sleep (12.2%). While the magnitude of error associated with estimating means decreased as more days were sampled, the paper notes that depending on the nature of the research question being asked, fewer days may yield sufficiently precise estimates. Therefore, researchers should conduct power analyses based on estimated inter- and intra-individual variability and sample size to determine how many days to sample when assessing children\u27s PA patterns
No difference in variability of unique hue selections and binary hue selections
If unique hues have special status in phenomenological experience as perceptually pure, it seems reasonable to assume that they are represented more precisely by the visual system than are other colors. Following the method of Malkoc et al. (J. Opt. Soc. Am. A22, 2154 [2005]), we gathered unique and binary hue selections from 50 subjects. For these subjects we repeated the measurements in two separate sessions, allowing us to measure test-retest reliabilities (0.52≤ρ≤0.78; p≪0.01). We quantified the within-individual variability for selections of each hue. Adjusting for the differences in variability intrinsic to different regions of chromaticity space, we compared the within-individual variability for unique hues to that for binary hues. Surprisingly, we found that selections of unique hues did not show consistently lower variability than selections of binary hues. We repeated hue measurements in a single session for an independent sample of 58 subjects, using a different relative scaling of the cardinal axes of MacLeod-Boynton chromaticity space. Again, we found no consistent difference in adjusted within-individual variability for selections of unique and binary hues. Our finding does not depend on the particular scaling chosen for the Y axis of MacLeod-Boynton chromaticity space
A specific brain structural basis for individual differences in reality monitoring.
Much recent interest has centered on understanding the relationship between brain structure variability and individual differences in cognition, but there has been little progress in identifying specific neuroanatomical bases of such individual differences. One cognitive ability that exhibits considerable variability in the healthy population is reality monitoring; the cognitive processes used to introspectively judge whether a memory came from an internal or external source (e.g., whether an event was imagined or actually occurred). Neuroimaging research has implicated the medial anterior prefrontal cortex (PFC) in reality monitoring, and here we sought to determine whether morphological variability in a specific anteromedial PFC brain structure, the paracingulate sulcus (PCS), might underlie performance. Fifty-three healthy volunteers were selected on the basis of MRI scans and classified into four groups according to presence or absence of the PCS in their left or right hemisphere. The group with absence of the PCS in both hemispheres showed significantly reduced reality monitoring performance and ability to introspect metacognitively about their performance when compared with other participants. Consistent with the prediction that sulcal absence might mean greater volume in the surrounding frontal gyri, voxel-based morphometry revealed a significant negative correlation between anterior PFC gray matter and reality monitoring performance. The findings provide evidence that individual differences in introspective abilities like reality monitoring may be associated with specific structural variability in the PFC
- …
