5,922 research outputs found

    Incremental selective decode-and-forward relaying for power line communication

    Full text link
    In this paper, an incremental selective decode-and-forward (ISDF) relay strategy is proposed for power line communication (PLC) systems to improve the spectral efficiency. Traditional decode-and-forward (DF) relaying employs two time slots by using half-duplex relays which significantly reduces the spectral efficiency. The ISDF strategy utilizes the relay only if the direct link quality fails to attain a certain information rate, thereby improving the spectral efficiency. The path gain is assumed to be log-normally distributed with very high distance dependent signal attenuation. Furthermore, the additive noise is modeled as a Bernoulli-Gaussian process to incorporate the effects of impulsive noise contents. Closed-form expressions for the outage probability and the fraction of times the relay is in use, and an approximate closed-form expression for the average bit error rate (BER) are derived for the binary phase-shift keying signaling scheme. We observe that the fraction of times the relay is in use can be significantly reduced compared to the traditional DF strategy. It is also observed that at high transmit power, the spectral efficiency increases while the average BER decreases with increase in the required rate.Comment: 6 pages, 4 figures, VTC Fall 201

    Energy-Efficient Cooperative Protocols for Full-Duplex Relay Channels

    Full text link
    In this work, energy-efficient cooperative protocols are studied for full-duplex relaying (FDR) with loopback interference. In these protocols, relay assistance is only sought under certain conditions on the different link outages to ensure effective cooperation. Recently, an energy-efficient selective decode-and-forward protocol was proposed for FDR, and was shown to outperform existing schemes in terms of outage. Here, we propose an incremental selective decode-and-forward protocol that offers additional power savings, while keeping the same outage performance. We compare the performance of the two protocols in terms of the end-to-end signal-to-noise ratio cumulative distribution function via closed-form expressions. Finally, we corroborate our theoretical results with simulation, and show the relative relay power savings in comparison to non-selective cooperation in which the relay cooperates regardless of channel conditions

    Energy efficiency of some non-cooperative, cooperative and hybrid communication schemes in multi-relay WSNs

    Get PDF
    In this paper we analyze the energy efficiency of single-hop, multi-hop, cooperative selective decode-and-forward, cooperative incremental decode-and-forward, and even the combination of cooperative and non-cooperative schemes, in wireless sensor networks composed of several nodes. We assume that, as the sensor nodes can experience either non line-of-sight or some line-of-sight conditions, the Nakagami-m fading distribution is used to model the wireless environment. The energy efficiency analysis is constrained by a target outage probability and an end-to-end throughput. Our results show that in most scenarios cooperative incremental schemes are more energy efficient than the other methods

    Diversity-Multiplexing Tradeoffs in MIMO Relay Channels

    Full text link
    A multi-hop relay channel with multiple antenna terminals in a quasi-static slow fading environment is considered. For both full-duplex and half-duplex relays the fundamental diversity-multiplexing tradeoff (DMT) is analyzed. It is shown that, while decode-and-forward (DF) relaying achieves the optimal DMT in the full-duplex relay scenario, the dynamic decode-and-forward (DDF) protocol is needed to achieve the optimal DMT if the relay is constrained to half-duplex operation. For the latter case, static protocols are considered as well, and the corresponding achievable DMT performance is characterized.Comment: To appear at IEEE Global Communications Conf. (Globecom), New Orleans, LA, Nov. 200

    Power minimization for OFDM Transmission with Subcarrier-pair based Opportunistic DF Relaying

    Full text link
    This paper develops a sum-power minimized resource allocation (RA) algorithm subject to a sum-rate constraint for cooperative orthogonal frequency division modulation (OFDM) transmission with subcarrier-pair based opportunistic decode-and-forward (DF) relaying. The improved DF protocol first proposed in [1] is used with optimized subcarrier pairing. Instrumental to the RA algorithm design is appropriate definition of variables to represent source/relay power allocation, subcarrier pairing and transmission-mode selection elegantly, so that after continuous relaxation, the dual method and the Hungarian algorithm can be used to find an (at least approximately) optimum RA with polynomial complexity. Moreover, the bisection method is used to speed up the search of the optimum Lagrange multiplier for the dual method. Numerical results are shown to illustrate the power-reduction benefit of the improved DF protocol with optimized subcarrier pairing.Comment: 4 pages, accepted by IEEE Communications Letter

    Regenerative and Adaptive schemes Based on Network Coding for Wireless Relay Network

    Full text link
    Recent technological advances in wireless communications offer new opportunities and challenges for relay network.To enhance system performance, Demodulate-Network Coding (Dm-NC) scheme has been examined at relay node; it works directly to De-map the received signals and after that forward the mixture to the destination. Simulation analysis has been proven that the performance of Dm-NC has superiority over analog-NC. In addition, the Quantize-Decode-NC scheme (QDF-NC) has been introduced. The presented simulation results clearly provide that the QDF-NC perform better than analog-NC. The toggle between analogNC and QDF-NC is simulated in order to investigate delay and power consumption reduction at relay node.Comment: 11 pages, 8 figures, International Journal of Computer Networks & Communications (IJCNC), Vol.4, No.3, May 201

    Efficient Incremental Relaying

    Full text link
    We propose a novel relaying scheme which improves the spectral efficiency of cooperative diversity systems by utilizing limited feedback from destination. Our scheme capitalizes on the fact that relaying is only required when direct transmission suffers deep fading. We calculate the packet error rate for the proposed efficient incremental relaying scheme with both amplify and forward and decode and forward relaying. Numerical results are also presented to verify their analytical counterparts
    corecore