23,302 research outputs found
Biphenotypic Sinonasal Sarcoma-Case Report and Review of Clinicopathological Features and Diagnostic Modalities.
Background
Biphenotypic sinonasal sarcoma is a recently described malignancy showing dual differentiation with both myogenic and neural elements. Due to its histologic similarities to other sinonasal malignancies, it is a diagnostic challenge.
Objective
The main purpose of this article is to report a case of biphenotypic sinonasal sarcoma and to consolidate data and provide a comprehensive review regarding pathological differences between biphenotypic sarcoma and other sinonasal malignancies and diagnostic modalities used for biphenotypic sarcoma.
Material and Methods
A systematic review of all cases of biphenotypic sinonasal sarcoma was performed using electronic databases (PubMed and Medline). Data collected included age, gender, symptoms, sub-site of origin, immunophenotyping, metastasis, recurrence, treatment, duration of follow-up, and survival outcomes.
Results
Ninety-five cases of biphenotypic sarcoma were found with mean age at diagnosis of 52.36 years (range, 24-87 years). Female to male ratio was 2.27:1. Extra-sinonasal extension was present in 28%. Immunophenotyping revealed that S-100 and SMA (smooth muscle actin) were consistently positive, while SOX-10 was consistently negative. PAX3-MAML3 fusion [t (2; 4) (q35; q31.1)] was the most common genetic rearrangement. Surgical excision with or without adjuvant radiotherapy was the most frequent treatment modality used. Recurrence was observed in 32% of cases with follow-up. None of the cases reported metastasis. Three patients had died at the time of publication that included one case with intracranial extension.
Conclusion
Biphenotypic sarcoma is distinct sinonasal malignancy with unique clinicopathological features. Testing involving a battery of myogenic and neural immunomarkers is essential for diagnostic confirmation and is a clinically useful endeavor when clinical suspicion is high.
© 2019 Georg Thieme Verlag KG Stuttgart. New York
Multicentric B-cell lymphoma in a pygmy goat
A six-year-old, male pygmy goat was referred with a sudden onset of peripheral lymphadenopathy, which initially started as enlarged inguinal lymph nodes. Clinical examination showed swollen retropharyngeal, prescapular and inguinal lymph nodes. Serologic testing for bovine leukemia, caprine arthritis-encephalitis virus and caseous lymphadenitis was negative. Fine needle aspirates of the prescapular lymph nodes were taken and revealed multiple, large lymphoblastic cells on cytology. Because of the poor prognosis and clinical deterioration, the animal was euthanized. Full necropsy was performed and showed generalized lymphadenopathy. Further histological and immunohistochemical investigation of the lymph nodes characterized this neoplasia as a multicentric large B-cell lymphoma
No genetic evidence for involvement of Deltaretroviruses in adult patients with precursor and mature T-cell neoplasms
Background The Deltaretrovirus genus comprises viruses that infect humans (HTLV), various simian species (STLV) and cattle (BLV). HTLV-I is the main causative agent in adult T-cell leukemia in endemic areas and some of the simian T-cell lymphotropic viruses have been implicated in the induction of malignant lymphomas in their hosts. BLV causes enzootic bovine leukosis in infected cattle or sheep. During the past few years several new Deltaretrovirus isolates have been described in various primate species. Two new HTLV-like viruses in humans have recently been identified and provisionally termed HTLV-III and HTLV-IV. In order to identify a broad spectrum of Deltaretroviruses by a single PCR approach we have established a novel consensus PCR based on nucleotide sequence data obtained from 42 complete virus isolates (HTLV-I/-II, STLV-I/-II/-III, BLV). The primer sequences were based on highly interspecies-conserved virus genome regions. We used this PCR to detect Deltaretroviruses in samples from adult patients with a variety of rare T-cell neoplasms in Germany. Results: The sensitivity of the consensus PCR was at least between 10-2 and 10-3 with 100% specificity as demonstrated by serial dilutions of cell lines infected with either HTLV-I, HTLV-II or BLV. Fifty acute T-cell lymphoblastic leukemia (T-ALL) samples and 33 samples from patients with various rare mature T-cell neoplasms (T-PLL, Sezary syndrome and other T-NHL) were subsequently investigated. There were no cases with HTLV-I, HTLV-II or any other Deltaretroviruses. Conclusions: The results rule out a significant involvement of HTLV-I or HTLV-II in these disease entities and show that other related Deltaretroviruses are not likely to be involved. The newly established Deltaretrovirus PCR may be a useful tool for identifying new Deltaretroviruses
Evolution of experimental design and research techniques in HIV-1 reservoir studies : a systematic review
Although HIV-1 has evolved from a deadly to a chronic disease over the past 20 years, an HIV-1 cure is still lacking due to the presence of persisting cellular viral reservoirs which are spread throughout the body in different anatomical compartments. Hence, the identification and characterization of these HIV-1 reservoirs were the focus of many studies during the past decades. In this review, a systematic literature screening and text mining approach were implemented to assess the evolution in experimental design of these HIV-1 reservoir studies. For this purpose. the online databases PubMed, Web of Science. and ClinicalTrials.gov were consulted and 1768 articles were identified, of which 106 are included in this review. We observed several evolutions that indicate a more structured approach of recent HIV-1 reservoir studies. This includes the use of well-characterized patient cohorts, tissue sampling at several time points and anatomical compartments, the inclusion of patients with different treatment status (on and off antiretroviral therapy), and the implementation of state-of-the-art research techniques such as single genome sequencing. In addition, there is an increased interest and sampling of lymphoid tissues and cerebrospinal fluid together with methods to investigate cellular subsets and HIV-1 sequences. Overall, this review describes an observed shift from detecting and quantifying HIV-1 toward a qualitative in-depth assessment of anatomical reservoirs and cellular subsets playing a role in H1V-1 persistence/latency. These trends coincide with the evolution in focus from controlling HIV-1 replication by currently available antiretroviral therapy toward HIV-1 curative strategies
Recommended from our members
Comprehensive Immune Monitoring of Clinical Trials to Advance Human Immunotherapy.
The success of immunotherapy has led to a myriad of clinical trials accompanied by efforts to gain mechanistic insight and identify predictive signatures for personalization. However, many immune monitoring technologies face investigator bias, missing unanticipated cellular responses in limited clinical material. We present here a mass cytometry (CyTOF) workflow for standardized, systems-level biomarker discovery in immunotherapy trials. To broadly enumerate immune cell identity and activity, we established and extensively assessed a reference panel of 33 antibodies to cover major cell subsets, simultaneously quantifying activation and immune checkpoint molecules in a single assay. This assay enumerates ≥98% of peripheral immune cells with ≥4 positively identifying antigens. Robustness and reproducibility are demonstrated on multiple samples types, across two research centers and by orthogonal measurements. Using automated analysis, we identify stratifying immune signatures in bone marrow transplantation-associated graft-versus-host disease. Together, this validated workflow ensures comprehensive immunophenotypic analysis and data comparability and will accelerate biomarker discovery
Gene rearrangements in bone marrow cells of patients with acute myelogenous leukemia
At diagnosis, clonal gene rearrangement probes {[}retinoic acid receptor (RAR)-alpha, major breakpoint cluster region (M-bcr), immunoglobulin (Ig)-JH, T cell receptor (TcR)-beta, myeloid lymphoid leukemia (MLL) or cytokine genes (GM-CSF, G-CSF, IL-3)] were detected in bone marrow samples from 71 of 153 patients with acute myelogenous leukemia (AML) (46%): in 41 patients with primary AML (pAML) (58%) and in 30 patients with secondary AML (42%). In all cases with promyelocytic leukemia (AML-M3) RAR-alpha gene rearrangements were detected (n = 9). Gene rearrangements in the Ig-JH or the TcR-beta or GM-CSF or IL-3 or MLL gene were detected in 12, 10, 16 and 12% of the cases, respectively, whereas only few cases showed gene rearrangements in the M-bcr (6%) or G-CSF gene (3%). Survival of pAML patients with TcR-beta gene rearrangements was longer and survival of pAML patients with IL-3 or GM-CSF gene rearrangement was shorter than in patients without those rearrangements. No worse survival outcome was seen in patients with rearrangements in the MLL, Ig-JH or M-bcr gene. In remission of AML (CR), clonal gene rearrangements were detected in 23 of 48 cases (48%) if samples were taken once in CR, in 23 of 26 cases (88%) if samples were taken twice in CR and in 23 of 23 cases (100%) if samples were studied three times in CR. All cases with gene rearrangements at diagnosis showed the same kind of rearrangement at relapse of the disease (n = 12). Our data show that (1) populations with clonal gene rearrangements can be regularly detected at diagnosis, in CR and at relapse of AML. (2) Certain gene rearrangements that are detectable at diagnosis have a prognostic significance for the patients' outcome. Our results point out the significance of gene rearrangement analyses at diagnosis of AML in order to identify `poor risk' patients - independently of the karyotype. Moreover, the persistence of clonal cells in the further course of AML can be studied by gene rearrangement analysis. Copyright (C) 2000 S. Karger AG, Basel
Information Preserving Component Analysis: Data Projections for Flow Cytometry Analysis
Flow cytometry is often used to characterize the malignant cells in leukemia
and lymphoma patients, traced to the level of the individual cell. Typically,
flow cytometric data analysis is performed through a series of 2-dimensional
projections onto the axes of the data set. Through the years, clinicians have
determined combinations of different fluorescent markers which generate
relatively known expression patterns for specific subtypes of leukemia and
lymphoma -- cancers of the hematopoietic system. By only viewing a series of
2-dimensional projections, the high-dimensional nature of the data is rarely
exploited. In this paper we present a means of determining a low-dimensional
projection which maintains the high-dimensional relationships (i.e.
information) between differing oncological data sets. By using machine learning
techniques, we allow clinicians to visualize data in a low dimension defined by
a linear combination of all of the available markers, rather than just 2 at a
time. This provides an aid in diagnosing similar forms of cancer, as well as a
means for variable selection in exploratory flow cytometric research. We refer
to our method as Information Preserving Component Analysis (IPCA).Comment: 26 page
T-Cell Subsets Predict Mortality in Malnourished Zambian Adults Initiating Antiretroviral Therapy.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedTo estimate the prognostic value of T-cell subsets in Zambian patients initiating antiretroviral therapy (ART), and to assess the impact of a nutritional intervention on T-cell subsets.This work was supported by European and Developing Countries Clinical Trials Partnership grant # IP.2009.33011.004; trial foods were prepared and supplied by Nutriset, Malauney, Franc
Quality control improvement at Jana DCS Sdn. Bhd.
Jana DCS Sdn. Bhd. is one of the companies that run the service of air conditioning system supply in Nusajaya, Johor, Malaysia. Quality improvement is one of the most important part when talking about a company, mostly companies that operate in service industries. Quality control plays the major parts in quality improvement as quality control is an operational technique to ensure efficient and effective operation.
Roughly, total net area cooled by Jana DCS Sdn. Bhd. is 590,000 square feet as for Johor State Government Administration Centre. While for Puteri Harbour, the total net area cooled is 614,000 square feet. Jana DCS Sdn. Bhd. operates Iskandar Malaysia’s first district cooling plant, with both thermal energy and chilled water storage capability that produce and supply cooling load for air conditioning to the Johor State Government Complex at Kota Iskandar and to various private sector developments at Puteri Harbour
- …
