57,401 research outputs found

    Enhanced Immunomodulation in Inflammatory Environments Favors Human Cardiac Mesenchymal Stromal-Like Cells for Allogeneic Cell Therapies

    Get PDF
    Rising numbers of patients with cardiovascular diseases and limited availability of donor hearts require new and improved therapy strategies. Human atrial appendage-derived cells (hAACs) are promising candidates for an allogeneic cell-based treatment. In this study, we evaluated their inductive and modulatory capacity regarding immune responses and underlying key mechanisms in vitro. For this, cryopreserved hAACs were either cultured in the presence of interferon-gamma (IFNγ) or left unstimulated. The expression of characteristic mesenchymal stromal cell markers (CD29, CD44, CD73, CD105, CD166) was revealed by flow cytometry that also highlighted a predominant negativity for CD90. A low immunogeneic phenotype in an inflammatory milieu was shown by lacking expression of co-stimulatory molecules and upregulation of the inhibitory ligands PD-L1 and PD-L2, despite de novo expression of HLA-DR. Co-cultures of hAACs with allogeneic peripheral blood mononuclear cells, proved their low immunogeneic state by absence of induced T cell proliferation and activation. Additionally, elevated levels of IL-1β, IL-33, and IL-10 were detectable in those cell culture supernatants. Furthermore, the immunomodulatory potential of hAACs was assessed in co-cultures with αCD3/αCD28-activated peripheral blood mononuclear cells. Here, a strong inhibition of T cell proliferation and reduction of pro-inflammatory cytokines (IFNγ, TNFα, TNFβ, IL-17A, IL-2) were observable after pre-stimulation of hAACs with IFNγ. Transwell experiments confirmed that mostly soluble factors are responsible for these suppressive effects. We were able to identify indolamin-2,3-dioxygenase (IDO) as a potential key player through a genome-wide gene expression analysis and could demonstrate its involvement in the observed immunological responses. While the application of blocking antibodies against both PD-1 ligands did not affect the immunomodulation by hAACs, 1-methyl-L-tryptophan as specific inhibitor of IDO was able to restore proliferation and to lower apoptosis of T cells. In conclusion, hAACs represent a cardiac-derived mesenchymal stromal-like cell type with a high potential for the application in an allogeneic setting, since they do not trigger T cell responses and even increase their immunomodulatory potential in inflammatory environments

    Seed-produced anti-globulin VHH-Fc antibodies retrieve globulin precursors in the insoluble fraction and modulate the Arabidopsis thaliana seed subcellular morphology

    Get PDF
    Key message Nanobody-heavy chain (VHH-Fc) antibody formats have the potential to immunomodulate even highly accumulating proteins and provide a valuable tool to experimentally modulate the subcellular distribution of seed storage proteins. Recombinant antibodies often obtain high accumulation levels in plants, and thus, besides being the actual end-product, antibodies targeting endogenous host proteins can be used to interfere with the localization and functioning of their corresponding antigens. Here, we compared the effect of a seed-expressed nanobody-heavy chain (VHH-Fc) antibody against the highly abundant Arabidopsis thaliana globulin seed storage protein cruciferin with that of a VHH-Fc antibody without endogenous target. Both antibodies reached high accumulation levels of around 10% of total soluble protein, but strikingly, another significant part was present in the insoluble protein fraction and was recovered only after extraction under denaturing conditions. In seeds containing the anti-cruciferin antibodies but not the antibody without endogenous target, the amount of soluble, processed globulin subunits was severely reduced and a major part of the cruciferin molecules was found as precursor in the insoluble fraction. Moreover, in these seeds, aberrant vacuolar phenotypes were observed that were different from the effects caused by the depletion of globulins in knock-out seeds. Remarkably, the seeds with strongly reduced globulin amounts are fully viable and germinate with frequencies similar to wild type, illustrating how flexible seeds can retrieve amino acids from the stored proteins to start germination

    The paradox of pregnancy : an update on the immunology of early pregnancy

    Get PDF
    Pregnancy is an altered physiological state where an organism essentially foreign to the individual carrying it, grows, develops and at an appropriate time probably initiates a series of signals which lead to its safe expulsion from the woman's body. The immunological changes which allow this process are unique to pregnancy. Recent work in this field has led to a further understanding of the changes which operate to adapt the woman to the pregnant state. The concept that has developed over the years is one where a number of factors exert their effect both at the systemic but mostly at the local uterine level to modulate the immune response which will then refrain from mounting an inflammatory response against the invading trophoblast. The main protagonists of this immunomodulation are embryonic factors, uterine (endometrial) NK cells and, of course, the hormone progesterone. Progress has been made from the original observations of miscarriage rates in HLA sharing couples and with the possibility of research in couples undergoing IVF cycles, factors are being identified which initiate immunomodulation. Once implantation occurs the endometrial NK cells which are abundant from the late luteal phase are activated to control trophoblastic invasion and enhance the changes in blood vessels which allow for adequate feto-maternal perfusion. The immune response is controlled by PIBF under the influence of progesterone to bias towards a humoral response and suppress a cytotoxic response. All these processes are prone to fail at times and the clinical manifestation of such a failure is miscarriage along with other obstetric complications such as intra-uterine growth retardation, pre-eclampsia and placental abruption. Progress in the understanding of the immunological processes which protect pregnancy will help in elucidating the mechanisms whereby these processes fail. A consequence of this should be the explanation of those cases as yet classified as unexplained recurrent miscarriage. The literature indicates that the prognosis for this group of patients is not as encouraging as one would hope and that progress in this area is eagerly awaited by both patients and doctors working in this field.peer-reviewe

    Differential and Temporal Immunomodulation of alpha4 Integrins on CD4+ Memory Cells by Bordetella pertussis and Bordetella parapertussis

    Get PDF
    Pertussis, caused by Bordetella pertussis (B. pertussis), is reemerging worldwide due to vaccine inefficacy. The hallmarks of infection are extreme lymphocytosis and delayed recovery, which are partially associated with pertussis toxin. Lymphocytes migrate to infected tissues using trafficking receptors. Specific combinations of these lymphocyte trafficking receptors are identified for skin and gut but are not well established for lung. This study focused on the effect of pertussis toxin on lung-associated trafficking receptors and tested the hypothesis that pertussis toxin alters dendritic cell imprinting of lung trafficking receptors on T cells, thus delaying resolution of the infection. B. pertussis-infected mice were compared with pertussis toxin-deficient strains. Imprinting of trafficking receptors on allogeneic T cells by dendritic cells derived from Bordetella-infected mice was analyzed by flow cytometry. Mice infected with Bordetella strains showed an increase in mature dendritic cells on day 5 post-infection. Despite their mature phenotype, dendritic cells from B. pertussis infection, were compromised in their ability to imprint lung trafficking receptors on allogenic T cells. These results indicated a pertussis toxin-dependent defect in dendritic cell imprinting of lung trafficking receptors on T cells. In conclusion, this study provides important data for future vaccine development against respiratory pathogens

    Immunomodulation stimulates the innervation of engineered tooth organ

    Get PDF
    The sensory innervation of the dental mesenchyme is essential for tooth function and protection. Sensory innervation of the dental pulp is mediated by axons originating from the trigeminal ganglia and is strictly regulated in time. Teeth can develop from cultured re-associations between dissociated dental epithelial and mesenchymal cells from Embryonic Day 14 mouse molars, after implantation under the skin of adult ICR mice. In these conditions however, the innervation of the dental mesenchyme did not occur spontaneously. In order to go further with this question, complementary experimental approaches were designed. Cultured cell re-associations were implanted together with trigeminal ganglia for one or two weeks. Although axonal growth was regularly observed extending from the trigeminal ganglia to all around the forming teeth, the presence of axons in the dental mesenchyme was detected in less than 2.5% of samples after two weeks, demonstrating a specific impairment of their entering the dental mesenchyme. In clinical context, immunosuppressive therapy using cyclosporin A was found to accelerate the innervation of transplanted tissues. Indeed, when cultured cell re-associations and trigeminal ganglia were co-implanted in cyclosporin A-treated ICR mice, nerve fibers were detected in the dental pulp, even reaching odontoblasts after one week. However, cyclosporin A shows multiple effects, including direct ones on nerve growth. To test whether there may be a direct functional relationship between immunomodulation and innervation, cell re-associations and trigeminal ganglia were co-implanted in immunocompromised Nude mice. In these conditions as well, the innervation of the dental mesenchyme was observed already after one week of implantation, but axons reached the odontoblast layer after two weeks only. This study demonstrated that immunodepression per se does stimulate the innervation of the dental mesenchyme

    Structure-functional activity relationship of β-glucans from the perspective of immunomodulation : a mini-review

    Get PDF
    β-Glucans are a heterogeneous group of glucose polymers with a common structure comprising a main chain of β-(1,3) and/or β-(1,4)-glucopyranosyl units, along with side chains with various branches and lengths. β-Glucans initiate immune responses via immune cells, which become activated by the binding of the polymer to specific receptors. However, β-glucans from different sources also differ in their structure, conformation, physical properties, binding affinity to receptors, and thus biological functions. The mechanisms behind this are not fully understood. This mini-review provides a comprehensive and up-to-date commentary on the relationship between β-glucans' structure and function in relation to their use for immunomodulation

    Induced Stem Cells as a Novel Multiple Sclerosis Therapy.

    Get PDF
    Stem cell replacement is providing hope for many degenerative diseases that lack effective therapeutic methods including multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system. Transplantation of neural stem cells or mesenchymal stem cells is a potential therapy for MS thanks to their capacity for cell repopulation as well as for their immunomodulatory and neurotrophic properties. Induced pluripotent stem cell (iPSC), an emerging cell source in regenerative medicine, is also being tested for the treatment of MS. Remarkable improvement in mobility and robust remyelination have been observed after transplantation of iPSC-derived neural cells into demyelinated models. Direct reprogramming of somatic cells into induced neural cells, such as induced neural stem cells (iNSCs) and induced oligodendrocyte progenitor cells (iOPCs), without passing through the pluripotency stage, is an alternative for transplantation that has been proved effective in the congenital hypomyelination model. iPSC technology is rapidly progressing as efforts are being made to increase the efficiency of iPSC therapy and reduce its potential side effects. In this review, we discuss the recent advances in application of stem cells, with particular focus on induced stem/progenitor cells (iPSCs, iNSC, iOPCs), which are promising in the treatment of MS

    Cytokine release syndrome in COVID-19 patients, a new scenario for an old concern. The fragile balance between infections and autoimmunity

    Get PDF
    On 7 January 2020, researchers isolated and sequenced in China from patients with severe pneumonitis a novel coronavirus, then called SARS-CoV-2, which rapidly spread worldwide, becoming a global health emergency. Typical manifestations consist of flu-like symptoms such as fever, cough, fatigue, and dyspnea. However, in about 20% of patients, the infection progresses to severe interstitial pneumonia and can induce an uncontrolled host-immune response, leading to a life-threatening condition called cytokine release syndrome (CRS). CRS represents an emergency scenario of a frequent challenge, which is the complex and interwoven link between infections and autoimmunity. Indeed, treatment of CRS involves the use of both antivirals to control the underlying infection and immunosuppressive agents to dampen the aberrant pro-inflammatory response of the host. Several trials, evaluating the safety and effectiveness of immunosuppressants commonly used in rheumatic diseases, are ongoing in patients with COVID-19 and CRS, some of which are achieving promising results. However, such a use should follow a multidisciplinary approach, be accompanied by close monitoring, be tailored to patient’s clinical and serological features, and be initiated at the right time to reach the best results. Autoimmune patients receiving immunosuppressants could be prone to SARS-CoV-2 infections; however, suspension of the ongoing therapy is contraindicated to avoid disease flares and a consequent increase in the infection risk
    corecore