3,133 research outputs found
Review of Immunoinformatic approaches to in-silico B-cell epitope prediction
In this paper, the current state of in-silico, B-cell epitope prediction is discussed. Recommendations for improving some of the approaches encountered are outlined, along with the presentation of an entirely novel technique, which uses molecular mechanics for epitope classification, evaluation and prediction
Highly conserved regions in Ebola virus RNA dependent RNA polymerase may be act as a universal novel peptide vaccine target: a computational approach
Recommended from our members
Statistical deconvolution of enthalpic energetic contributions to MHC-peptide binding affinity
Background:
MHC Class I molecules present antigenic peptides to cytotoxic T cells, which forms an integral part of the adaptive immune response. Peptides are bound within a groove formed by the MHC heavy chain. Previous approaches to MHC Class I-peptide binding prediction have largely concentrated on the peptide anchor residues located at the P2 and C-terminus positions.
Results:
A large dataset comprising MHC-peptide structural complexes was created by re-modelling pre-determined x-ray crystallographic structures. Static energetic analysis, following energy minimisation, was performed on the dataset in order to characterise interactions between bound peptides and the MHC Class I molecule, partitioning the interactions within the groove into van der Waals, electrostatic and total non-bonded energy contributions.
Conclusion:
The QSAR techniques of Genetic Function Approximation (GFA) and Genetic Partial Least Squares (G/PLS) algorithms were used to identify key interactions between the two molecules by comparing the calculated energy values with experimentally-determined BL50 data. Although the peptide termini binding interactions help ensure the stability of the MHC Class I-peptide complex, the central region of the peptide is also important in defining the specificity of the interaction. As thermodynamic studies indicate that peptide association and dissociation may be driven entropically, it may be necessary to incorporate entropic contributions into future calculations
Development and validation of an epitope prediction tool for swine (PigMatrix) based on the pocket profile method
XML in Motion from Genome to Drug
Information technology (IT) has emerged as a central to the solution of contemporary genomics and drug discovery problems. Researchers involved in genomics, proteomics, transcriptional profiling, high throughput structure determination, and in other sub-disciplines of bioinformatics have direct impact on this IT revolution. As the full genome sequences of many species, data from structural genomics, micro-arrays, and proteomics became available, integration of these data to a common platform require sophisticated bioinformatics tools. Organizing these data into knowledgeable databases and developing appropriate software tools for analyzing the same are going to be major challenges. XML (eXtensible Markup Language) forms the backbone of biological data representation and exchange over the internet, enabling researchers to aggregate data from various heterogeneous data resources. The present article covers a comprehensive idea of the integration of XML on particular type of biological databases mainly dealing with sequence-structure-function relationship and its application towards drug discovery. This e-medical science approach should be applied to other scientific domains and the latest trend in semantic web applications is also highlighted
- …
