41,551 research outputs found
ViBe (Virtual Berlin) - Immersive Interactive 3D Urban Data Visualization - Immersive interactive 3D urban data visualization
The project investigates the possibility of visualizing open source data in a 3D interactive virtual environment. We propose a new tool, 'ViBe'. We programmed 'ViBe' using Unity for its compatibility with HTC VIVE glasses for virtual reality (VR). ViBe offers an abstract visualization of open source data in a 3D interactive environment. The ViBe environment entails three main topics a) inhabitants, b) environmental factors, and c) land-use; acting as representatives of parameters for cities and urban design. Berlin serves as a case study. The data sets used are divided according to Berlin's twelve administrative districts. The user immerses into the virtual environment where they can choose, using the HTC Vive controllers, which district (or Berlin as a whole) they want information for and which topics they want to be visualized, and they can also teleport back and forth between the different districts. The goal of this project is to represent different urban parameters an abstract simulation where we correlate the corresponding data sets. By experiencing the city through visualized data, ViBe aims to provide the user with a clearer perspective onto the city and the relationship between its urban parameters. ViBe is designed for adults and kids, urban planners, politicians and real estate developers alike
Immersive 4D Interactive Visualization of Large-Scale Simulations
In dense clusters a bewildering variety of interactions between stars can be
observed, ranging from simple encounters to collisions and other mass-transfer
encounters. With faster and special-purpose computers like GRAPE, the amount of
data per simulation is now exceeding 1TB. Visualization of such data has now
become a complex 4D data-mining problem, combining space and time, and finding
interesting events in these large datasets. We have recently starting using the
virtual reality simulator, installed in the Hayden Planetarium in the American
Museum for Natural History, to tackle some of these problem. This work
(http://www.astro.umd.edu/nemo/amnh/) reports on our first ``observations'',
modifications needed for our specific experiments, and perhaps field ideas for
other fields in science which can benefit from such immersion. We also discuss
how our normal analysis programs can be interfaced with this kind of
visualization.Comment: 4 pages, 1 figure, ADASS-X conference proceeding
Prop-Based Haptic Interaction with Co-location and Immersion: an Automotive Application
Most research on 3D user interfaces aims at providing only a single sensory
modality. One challenge is to integrate several sensory modalities into a
seamless system while preserving each modality's immersion and performance
factors. This paper concerns manipulation tasks and proposes a visuo-haptic
system integrating immersive visualization, tactile force and tactile feedback
with co-location. An industrial application is presented
Exploring the Design Space of Immersive Urban Analytics
Recent years have witnessed the rapid development and wide adoption of
immersive head-mounted devices, such as HTC VIVE, Oculus Rift, and Microsoft
HoloLens. These immersive devices have the potential to significantly extend
the methodology of urban visual analytics by providing critical 3D context
information and creating a sense of presence. In this paper, we propose an
theoretical model to characterize the visualizations in immersive urban
analytics. Further more, based on our comprehensive and concise model, we
contribute a typology of combination methods of 2D and 3D visualizations that
distinguish between linked views, embedded views, and mixed views. We also
propose a supporting guideline to assist users in selecting a proper view under
certain circumstances by considering visual geometry and spatial distribution
of the 2D and 3D visualizations. Finally, based on existing works, possible
future research opportunities are explored and discussed.Comment: 23 pages,11 figure
An Introduction to 3D User Interface Design
3D user interface design is a critical component of any virtual environment (VE) application. In this paper, we present a broad overview of three-dimensional (3D) interaction and user interfaces. We discuss the effect of common VE hardware devices on user interaction, as well as interaction techniques for generic 3D tasks and the use of traditional two-dimensional interaction styles in 3D environments. We divide most user interaction tasks into three categories: navigation, selection/manipulation, and system control. Throughout the paper, our focus is on presenting not only the available techniques, but also practical guidelines for 3D interaction design and widely held myths. Finally, we briefly discuss two approaches to 3D interaction design, and some example applications with complex 3D interaction requirements. We also present an annotated online bibliography as a reference companion to this article
Exploring the Use of Virtual Worlds as a Scientific Research Platform: The Meta-Institute for Computational Astrophysics (MICA)
We describe the Meta-Institute for Computational Astrophysics (MICA), the
first professional scientific organization based exclusively in virtual worlds
(VWs). The goals of MICA are to explore the utility of the emerging VR and VWs
technologies for scientific and scholarly work in general, and to facilitate
and accelerate their adoption by the scientific research community. MICA itself
is an experiment in academic and scientific practices enabled by the immersive
VR technologies. We describe the current and planned activities and research
directions of MICA, and offer some thoughts as to what the future developments
in this arena may be.Comment: 15 pages, to appear in the refereed proceedings of "Facets of Virtual
Environments" (FaVE 2009), eds. F. Lehmann-Grube, J. Sablating, et al., ICST
Lecture Notes Ser., Berlin: Springer Verlag (2009); version with full
resolution color figures is available at
http://www.mica-vw.org/wiki/index.php/Publication
Immersive VR Visualizations by VFIVE. Part 1: Development
We have been developing a visualization application for CAVE-type virtual
reality (VR) systems for more than a decade. This application, VFIVE, is
currently used in several CAVE systems in Japan for routine visualizations. It
is also used as a base system of further developments of advanced
visualizations. The development of VFIVE is summarized.Comment: 9 figure
Immersive and non immersive 3D virtual city: decision support tool for urban sustainability
Sustainable urban planning decisions must not only consider the physical structure of the urban development but the economic, social and environmental factors. Due to the prolonged times scales of major urban development projects the current and future impacts of any decision made must be fully understood. Many key project decisions are made early in the decision making process with decision makers later seeking agreement for proposals once the key decisions have already been made, leaving many stakeholders, especially the general public, feeling marginalised by the process. Many decision support tools have been developed to aid in the decision making process, however many of these are expert orientated, fail to fully address spatial and temporal issues and do not reflect the interconnectivity of the separate domains and their indicators. This paper outlines a platform that combines computer game techniques, modelling of economic, social and environmental indicators to provide an interface that presents a 3D interactive virtual city with sustainability information overlain. Creating a virtual 3D urban area using the latest video game techniques ensures: real-time rendering of the 3D graphics; exploitation of novel techniques of how complex multivariate data is presented to the user; immersion in the 3D urban development, via first person navigation, exploration and manipulation of the environment with consequences updated in real-time. The use of visualisation techniques begins to remove sustainability assessment’s reliance on the existing expert systems which are largely inaccessible to many of the stakeholder groups, especially the general public
- …
