343,516 research outputs found

    Image processing for the extraction of nutritional information from food labels

    Get PDF
    Current techniques for tracking nutritional data require undesirable amounts of either time or man-power. People must choose between tediously recording and updating dietary information or depending on unreliable crowd-sourced or costly maintained databases. Our project looks to overcome these pitfalls by providing a programming interface for image analysis that will read and report the information present on a nutrition label directly. Our solution involves a C++ library that combines image pre-processing, optical character recognition, and post-processing techniques to pull the relevant information from an image of a nutrition label. We apply an understanding of a nutrition label\u27s content and data organization to approach the accuracy of traditional data-entry methods. Our system currently provides around 80% accuracy for most label images, and we will continue to work to improve our accuracy

    Independent appraisal of the MSFC optical data reduction schemes

    Get PDF
    A few state-of-the-art optical image processing techniques are described and their potential applications to the ACPL experiments are suggested. The discussion also includes the selection of recording media in the present system and the enhancement of signal-to-noise ratio for the expected data from ACPL

    High resolution, high frame rate video technology development plan and the near-term system conceptual design

    Get PDF
    The objective of the High Resolution, High Frame Rate Video Technology (HHVT) development effort is to provide technology advancements to remove constraints on the amount of high speed, detailed optical data recorded and transmitted for microgravity science and application experiments. These advancements will enable the development of video systems capable of high resolution, high frame rate video data recording, processing, and transmission. Techniques such as multichannel image scan, video parameter tradeoff, and the use of dual recording media were identified as methods of making the most efficient use of the near-term technology

    An Intelligent Monitoring System of Vehicles on Highway Traffic

    Full text link
    Vehicle speed monitoring and management of highways is the critical problem of the road in this modern age of growing technology and population. A poor management results in frequent traffic jam, traffic rules violation and fatal road accidents. Using traditional techniques of RADAR, LIDAR and LASAR to address this problem is time-consuming, expensive and tedious. This paper presents an efficient framework to produce a simple, cost efficient and intelligent system for vehicle speed monitoring. The proposed method uses an HD (High Definition) camera mounted on the road side either on a pole or on a traffic signal for recording video frames. On the basis of these frames, a vehicle can be tracked by using radius growing method, and its speed can be calculated by calculating vehicle mask and its displacement in consecutive frames. The method uses pattern recognition, digital image processing and mathematical techniques for vehicle detection, tracking and speed calculation. The validity of the proposed model is proved by testing it on different highways.Comment: 5 page

    HoloCam: A subsea holographic camera for recording marine organisms and particles

    Get PDF
    The HoloCam system is a major component of a multi-national multi-discipline project known as HoloMar (funded by the European Commission under the MAST III initiative). The project is concerned with the development of pulsed laser holography to analyse and monitor the populations of living organisms and inanimate particles within the world's oceans. We describe here the development, construction and evaluation of a prototype underwater camera, the purpose of which is to record marine organisms and particles, in-situ. Recording using holography provides several advantages over conventional sampling methods in that it allows non-intrusive, non-destructive, high-resolution imaging of large volumes (up to 10^5 cm^3) in three dimensions. The camera incorporates both in-line and off-axis holographic techniques, which allows particles from a few micrometres to tens of centimetres to be captured. In tandem with development of the HoloCam, a dedicated holographic replay system and an automated data extraction and image processing facility are being developed. These will allow, optimisation of the images recorded by the camera, identification of species and particle concentration plotting

    Close-range photogrammetry enables documentation of environment-induced deformation of architectural heritage

    Get PDF
    Deformation, damage and permanent loss of heritage assets due to various physical and environmental factors has always been a major problem. As the availability of funds for conservation and restoration is limited, the digital documentation of heritage objects and monitoring of environment-induced deformations are increasingly important for cultural heritage preservation. Our study elucidates developments in the digital image capturing and processing for recording architectural heritage objects focusing on the digital camera calibration, close-range imaging, and photogrammetric modelling of complex structures using image matching techniques. A particular consideration in this paper is given to the ortho-photographic image compiling and accuracy assessment procedure. The practicality of the methodology is demonstrated by applying photogrammetric system PhotoMod for documentation of decorative elements in Uzutrakis manor, a national heritage site in Trakai, Lithuania

    Close-range photogrammetry enables documentation of environment-induced deformation of architectural heritage

    Get PDF
    Deformation, damage and permanent loss of heritage assets due to various physical and environmental factors has always been a major problem. As the availability of funds for conservation and restoration is limited, the digital documentation of heritage objects and monitoring of environment-induced deformations are increasingly important for cultural heritage preservation. Our study elucidates developments in the digital image capturing and processing for recording architectural heritage objects focusing on the digital camera calibration, close-range imaging, and photogrammetric modelling of complex structures using image matching techniques. A particular consideration in this paper is given to the ortho-photographic image compiling and accuracy assessment procedure. The practicality of the methodology is demonstrated by applying photogrammetric system PhotoMod for documentation of decorative elements in Uzutrakis manor, a national heritage site in Trakai, Lithuania

    EKG De-noising using 2-D Wavelet Techniques

    Get PDF
    © ASEE 2009The electrocardiogram (ECG or EKG) is a recording of the potential produced by the heart, taken from specific predetermined parts of the body such as arms, legs or points on the chest. It plays an important role in medical field as monitoring of human body and the diagnosis of many heart related problems depend on the recording. Hence its accurate measurement is a must. This paper presents the study of filtering the noises present in an EKG waveform using 2-D wavelet techniques. Wavelets are mathematical functions that cut up data into different frequency components, and then study each component with a resolution matched to its scale. Wavelets are predominantly used for image processing techniques. Hence to use a 2-D technique over a 1-D signal, an EKG should be represented as a mesh or a 2-D image map. Such an image map, or an EKG map in this case, can be used by wavelet processing for de-noising purposes. The de-noising procedure is performed using three steps: decomposition, thresholding and reconstruction. The paper discusses the mentioned steps in detail
    corecore