558,823 research outputs found

    Reconfiguring the Imaging Pipeline for Computer Vision

    Full text link
    Advancements in deep learning have ignited an explosion of research on efficient hardware for embedded computer vision. Hardware vision acceleration, however, does not address the cost of capturing and processing the image data that feeds these algorithms. We examine the role of the image signal processing (ISP) pipeline in computer vision to identify opportunities to reduce computation and save energy. The key insight is that imaging pipelines should be designed to be configurable: to switch between a traditional photography mode and a low-power vision mode that produces lower-quality image data suitable only for computer vision. We use eight computer vision algorithms and a reversible pipeline simulation tool to study the imaging system's impact on vision performance. For both CNN-based and classical vision algorithms, we observe that only two ISP stages, demosaicing and gamma compression, are critical for task performance. We propose a new image sensor design that can compensate for skipping these stages. The sensor design features an adjustable resolution and tunable analog-to-digital converters (ADCs). Our proposed imaging system's vision mode disables the ISP entirely and configures the sensor to produce subsampled, lower-precision image data. This vision mode can save ~75% of the average energy of a baseline photography mode while having only a small impact on vision task accuracy

    Compensating for Large In-Plane Rotations in Natural Images

    Full text link
    Rotation invariance has been studied in the computer vision community primarily in the context of small in-plane rotations. This is usually achieved by building invariant image features. However, the problem of achieving invariance for large rotation angles remains largely unexplored. In this work, we tackle this problem by directly compensating for large rotations, as opposed to building invariant features. This is inspired by the neuro-scientific concept of mental rotation, which humans use to compare pairs of rotated objects. Our contributions here are three-fold. First, we train a Convolutional Neural Network (CNN) to detect image rotations. We find that generic CNN architectures are not suitable for this purpose. To this end, we introduce a convolutional template layer, which learns representations for canonical 'unrotated' images. Second, we use Bayesian Optimization to quickly sift through a large number of candidate images to find the canonical 'unrotated' image. Third, we use this method to achieve robustness to large angles in an image retrieval scenario. Our method is task-agnostic, and can be used as a pre-processing step in any computer vision system.Comment: Accepted at Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP) 201

    Subsurface structure analysis using computational interpretation and learning: A visual signal processing perspective

    Full text link
    Understanding Earth's subsurface structures has been and continues to be an essential component of various applications such as environmental monitoring, carbon sequestration, and oil and gas exploration. By viewing the seismic volumes that are generated through the processing of recorded seismic traces, researchers were able to learn from applying advanced image processing and computer vision algorithms to effectively analyze and understand Earth's subsurface structures. In this paper, first, we summarize the recent advances in this direction that relied heavily on the fields of image processing and computer vision. Second, we discuss the challenges in seismic interpretation and provide insights and some directions to address such challenges using emerging machine learning algorithms

    TasselNet: Counting maize tassels in the wild via local counts regression network

    Full text link
    Accurately counting maize tassels is important for monitoring the growth status of maize plants. This tedious task, however, is still mainly done by manual efforts. In the context of modern plant phenotyping, automating this task is required to meet the need of large-scale analysis of genotype and phenotype. In recent years, computer vision technologies have experienced a significant breakthrough due to the emergence of large-scale datasets and increased computational resources. Naturally image-based approaches have also received much attention in plant-related studies. Yet a fact is that most image-based systems for plant phenotyping are deployed under controlled laboratory environment. When transferring the application scenario to unconstrained in-field conditions, intrinsic and extrinsic variations in the wild pose great challenges for accurate counting of maize tassels, which goes beyond the ability of conventional image processing techniques. This calls for further robust computer vision approaches to address in-field variations. This paper studies the in-field counting problem of maize tassels. To our knowledge, this is the first time that a plant-related counting problem is considered using computer vision technologies under unconstrained field-based environment.Comment: 14 page
    corecore