2,525,568 research outputs found

    Decision Fusion in Space-Time Spreading aided Distributed MIMO WSNs

    Full text link
    In this letter, we propose space-time spreading (STS) of local sensor decisions before reporting them over a wireless multiple access channel (MAC), in order to achieve flexible balance between diversity and multiplexing gain as well as eliminate any chance of intrinsic interference inherent in MAC scenarios. Spreading of the sensor decisions using dispersion vectors exploits the benefits of multi-slot decision to improve low-complexity diversity gain and opportunistic throughput. On the other hand, at the receive side of the reporting channel, we formulate and compare optimum and sub-optimum fusion rules for arriving at a reliable conclusion.Simulation results demonstrate gain in performance with STS aided transmission from a minimum of 3 times to a maximum of 6 times over performance without STS.Comment: 5 pages, 5 figure

    Objective assessment of region of interest-aware adaptive multimedia streaming quality

    Get PDF
    Adaptive multimedia streaming relies on controlled adjustment of content bitrate and consequent video quality variation in order to meet the bandwidth constraints of the communication link used for content delivery to the end-user. The values of the easy to measure network-related Quality of Service metrics have no direct relationship with the way moving images are perceived by the human viewer. Consequently variations in the video stream bitrate are not clearly linked to similar variation in the user perceived quality. This is especially true if some human visual system-based adaptation techniques are employed. As research has shown, there are certain image regions in each frame of a video sequence on which the users are more interested than in the others. This paper presents the Region of Interest-based Adaptive Scheme (ROIAS) which adjusts differently the regions within each frame of the streamed multimedia content based on the user interest in them. ROIAS is presented and discussed in terms of the adjustment algorithms employed and their impact on the human perceived video quality. Comparisons with existing approaches, including a constant quality adaptation scheme across the whole frame area, are performed employing two objective metrics which estimate user perceived video quality

    AUTOMATIC MUSIC TRANSCRIPTION USING ROW WEIGHTED DECOMPOSITIONS

    Get PDF
    (c) 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. Published in: Proc IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2013), Vancouver, Canada, 26-31 May 2013. pp. 16-20

    PYIN: A FUNDAMENTAL FREQUENCY ESTIMATOR USING PROBABILISTIC THRESHOLD DISTRIBUTIONS

    Get PDF
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    POLYPHONIC PIANO TRANSCRIPTION USING NON-NEGATIVE MATRIX FACTORISATION WITH GROUP SPARSITY

    Get PDF
    (c)2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. Published in: Proc IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2014), Florence, Italy, 5-9 May 2014. pp.3136-3140

    Optimal sizing of C-type passive filters under non-sinusoidal conditions

    Get PDF
    In the literature, much attention has been focused on power system harmonics. One of its important effects is degradation of the load power factor. In this article, a C-type filter is used for reducing harmonic distortion, improving system performance, and compensating reactive power in order to improve the load power factor while taking into account economic considerations. Optimal sizing of the C-type filter parameters based on maximization of the load power factor as an objective function is determined. The total installation cost of the C-type filter and that of the conventional shunt (single-tuned) passive filter are comparatively evaluated. Background voltage and load current harmonics are taken into account. Recommendations defined in IEEE standards 519-1992 and 18-2002 are taken as the main constraints in this study. The presented design is tested using four numerical cases taken from previous publications, and the proposed filter results are compared with those of other published techniques. The results validate that the performance of the C-type passive filter as a low-pass filter is acceptable, especially in the case of lower short-circuit capacity systems. The C-type filter may achieve the same power factor with a lower total installation cost than a single-tuned passive filter

    Throughput and range characterization of IEEE 802.11ah

    Full text link
    The most essential part of Internet of Things (IoT) infrastructure is the wireless communication system that acts as a bridge for the delivery of data and control messages. However, the existing wireless technologies lack the ability to support a huge amount of data exchange from many battery driven devices spread over a wide area. In order to support the IoT paradigm, the IEEE 802.11 standard committee is in process of introducing a new standard, called IEEE 802.11ah. This is one of the most promising and appealing standards, which aims to bridge the gap between traditional mobile networks and the demands of the IoT. In this paper, we first discuss the main PHY and MAC layer amendments proposed for IEEE 802.11ah. Furthermore, we investigate the operability of IEEE 802.11ah as a backhaul link to connect devices over a long range. Additionally, we compare the aforementioned standard with previous notable IEEE 802.11 amendments (i.e. IEEE 802.11n and IEEE 802.11ac) in terms of throughput (with and without frame aggregation) by utilizing the most robust modulation schemes. The results show an improved performance of IEEE 802.11ah (in terms of power received at long range while experiencing different packet error rates) as compared to previous IEEE 802.11 standards.Comment: 7 pages, 6 figures, 5 table

    Simultaneous Codeword Optimization (SimCO) for Dictionary Update and Learning

    Get PDF
    We consider the data-driven dictionary learning problem. The goal is to seek an over-complete dictionary from which every training signal can be best approximated by a linear combination of only a few codewords. This task is often achieved by iteratively executing two operations: sparse coding and dictionary update. In the literature, there are two benchmark mechanisms to update a dictionary. The first approach, such as the MOD algorithm, is characterized by searching for the optimal codewords while fixing the sparse coefficients. In the second approach, represented by the K-SVD method, one codeword and the related sparse coefficients are simultaneously updated while all other codewords and coefficients remain unchanged. We propose a novel framework that generalizes the aforementioned two methods. The unique feature of our approach is that one can update an arbitrary set of codewords and the corresponding sparse coefficients simultaneously: when sparse coefficients are fixed, the underlying optimization problem is similar to that in the MOD algorithm; when only one codeword is selected for update, it can be proved that the proposed algorithm is equivalent to the K-SVD method; and more importantly, our method allows us to update all codewords and all sparse coefficients simultaneously, hence the term simultaneous codeword optimization (SimCO). Under the proposed framework, we design two algorithms, namely, primitive and regularized SimCO. We implement these two algorithms based on a simple gradient descent mechanism. Simulations are provided to demonstrate the performance of the proposed algorithms, as compared with two baseline algorithms MOD and K-SVD. Results show that regularized SimCO is particularly appealing in terms of both learning performance and running speed.Comment: 13 page

    VSSA-NET: Vertical Spatial Sequence Attention Network for Traffic Sign Detection

    Full text link
    Although traffic sign detection has been studied for years and great progress has been made with the rise of deep learning technique, there are still many problems remaining to be addressed. For complicated real-world traffic scenes, there are two main challenges. Firstly, traffic signs are usually small size objects, which makes it more difficult to detect than large ones; Secondly, it is hard to distinguish false targets which resemble real traffic signs in complex street scenes without context information. To handle these problems, we propose a novel end-to-end deep learning method for traffic sign detection in complex environments. Our contributions are as follows: 1) We propose a multi-resolution feature fusion network architecture which exploits densely connected deconvolution layers with skip connections, and can learn more effective features for the small size object; 2) We frame the traffic sign detection as a spatial sequence classification and regression task, and propose a vertical spatial sequence attention (VSSA) module to gain more context information for better detection performance. To comprehensively evaluate the proposed method, we do experiments on several traffic sign datasets as well as the general object detection dataset and the results have shown the effectiveness of our proposed method

    GETNET: A General End-to-end Two-dimensional CNN Framework for Hyperspectral Image Change Detection

    Full text link
    Change detection (CD) is an important application of remote sensing, which provides timely change information about large-scale Earth surface. With the emergence of hyperspectral imagery, CD technology has been greatly promoted, as hyperspectral data with the highspectral resolution are capable of detecting finer changes than using the traditional multispectral imagery. Nevertheless, the high dimension of hyperspectral data makes it difficult to implement traditional CD algorithms. Besides, endmember abundance information at subpixel level is often not fully utilized. In order to better handle high dimension problem and explore abundance information, this paper presents a General End-to-end Two-dimensional CNN (GETNET) framework for hyperspectral image change detection (HSI-CD). The main contributions of this work are threefold: 1) Mixed-affinity matrix that integrates subpixel representation is introduced to mine more cross-channel gradient features and fuse multi-source information; 2) 2-D CNN is designed to learn the discriminative features effectively from multi-source data at a higher level and enhance the generalization ability of the proposed CD algorithm; 3) A new HSI-CD data set is designed for the objective comparison of different methods. Experimental results on real hyperspectral data sets demonstrate the proposed method outperforms most of the state-of-the-arts
    corecore