105,590 research outputs found

    Upregulation of inducible NO synthase by exogenous adenosine in vascular smooth muscle cells activated by inflammatory stimuli in experimental diabetes

    Get PDF
    BACKGROUND: Adenosine has been shown to induce nitric oxide (NO) production via inducible NO synthase (iNOS) activation in vascular smooth muscle cells (VSMCs). Although this is interpreted as a beneficial vasodilating pathway in vaso-occlusive disorders, iNOS is also involved in diabetic vascular dysfunction. Because the turnover of and the potential to modulate iNOS by adenosine in experimental diabetes have not been explored, we hypothesized that both the adenosine system and control of iNOS function are impaired in VSMCs from streptozotocin-diabetic rats. METHODS: Male Sprague-Dawley rats were injected with streptozotocin once to induce diabetes. Aortic VSMCs from diabetic and nondiabetic rats were isolated, cultured and exposed to lipopolysaccharide (LPS) plus a cytokine mix for 24 h in the presence or absence of (1) exogenous adenosine and related compounds, and/or (2) pharmacological agents affecting adenosine turnover. iNOS functional expression was determined by immunoblotting and NO metabolite assays. Concentrations of adenosine, related compounds and metabolites thereof were assayed by HPLC. Vasomotor responses to adenosine were determined in endothelium-deprived aortic rings. RESULTS: Treatment with adenosine-degrading enzymes or receptor antagonists increased iNOS formation in activated VSMCs from nondiabetic and diabetic rats. Following treatment with the adenosine transport inhibitor NBTI, iNOS levels increased in nondiabetic but decreased in diabetic VSMCs. The amount of secreted NO metabolites was uncoupled from iNOS levels in diabetic VSMCs. Addition of high concentrations of adenosine and its precursors or analogues enhanced iNOS formation solely in diabetic VSMCs. Exogenous adenosine and AMP were completely removed from the culture medium and converted into metabolites. A tendency towards elevated inosine generation was observed in diabetic VSMCs, which were also less sensitive to CD73 inhibition, but inosine supplementation did not affect iNOS levels. Pharmacological inhibition of NOS abolished adenosine-induced vasorelaxation in aortic tissues from diabetic but not nondiabetic animals. CONCLUSIONS: Endogenous adenosine prevented cytokine- and LPS-induced iNOS activation in VSMCs. By contrast, supplementation with adenosine and its precursors or analogues enhanced iNOS levels in diabetic VSMCs. This effect was associated with alterations in exogenous adenosine turnover. Thus, overactivation of the adenosine system may foster iNOS-mediated diabetic vascular dysfunction

    Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal growth factor receptor signaling

    Get PDF
    Neuroinflammation is characterized by activation of microglial cells, followed by production of nitric oxide (NO), which may have different outcomes on neurogenesis, favoring or inhibiting this process. In the present study, we investigated how the inflammatory mediator NO can affect proliferation of neural stem cells (NSCs), and explored possible mechanisms underlying this effect. We investigated which mechanisms are involved in the regulation of NSC proliferation following treatment with an inflammatory stimulus (lipopolysaccharide plus IFN-gamma), using a culture system of subventricular zone (SVZ)-derived NSCs mixed with microglia cells obtained from wild-type mice (iNOS(+/+)) or from iNOS knockout mice (iNOS(-/-)). We found an impairment of NSC cell proliferation in iNOS(+/+) mixed cultures, which was not observed in iNOS(-/-) mixed cultures. Furthermore, the increased release of NO by activated iNOS(+/+) microglial cells decreased the activation of the ERK/MAPK signaling pathway, which was concomitant with an enhanced nitration of the EGF receptor. Preventing nitrogen reactive species formation with MnTBAP, a scavenger of peroxynitrite (ONOO-), or using the ONOO- degradation catalyst FeTMPyP cell proliferation and ERK signaling were restored to basal levels in iNOS(+/+) mixed cultures. Moreover, exposure to the NO donor NOC-18 (100 mu M), for 48 h, inhibited SVZ-derived NSC proliferation. Regarding the antiproliferative effect of NO, we found that NOC-18 caused the impairment of signaling through the ERK/MAPK pathway, which may be related to increased nitration of the EGF receptor in NSC. Using MnTBAP nitration was prevented, maintaining ERK signaling, rescuing NSC proliferation. We show that NO from inflammatory origin leads to a decreased function of the EGF receptor, which compromised proliferation of NSC. We also demonstrated that NO-mediated nitration of the EGF receptor caused a decrease in its phosphorylation, thus preventing regular proliferation signaling through the ERK/MAPK pathway.Foundation for Science and Technology, (FCT, Portugal); COMPETE; FEDER [PEst-C/SAU/LA0001/2013-2014, PEst-OE/EQB/LA0023/2013-2014, PTDC/SAU-NEU/102612/2008, PTDC/NEU-OSD/0473/2012]; FCT, Portugal [SERH/BPD/78901/2011, SERH/BD/38127/2007, SFRH/BD/77903/2011, SFRH/BD/79308/2011]info:eu-repo/semantics/publishedVersio

    Nitric Oxide Regulates Neurogenesis in the Hippocampus following Seizures

    Get PDF
    Hippocampal neurogenesis is changed by brain injury. When neuroinflammation accompanies injury, activation of resident microglial cells promotes the release of inflammatory cytokines and reactive oxygen/nitrogen species like nitric oxide (NO). In these conditions, NO promotes proliferation of neural stem cells (NSC) in the hippocampus. However, little is known about the role of NO in the survival and differentiation of newborn cells in the injured dentate gyrus. Here we investigated the role of NO following seizures in the regulation of proliferation, migration, differentiation, and survival of NSC in the hippocampus using the kainic acid (KA) induced seizuremouse model. We show that NO increased the proliferation of NSC and the number of neuroblasts following seizures but was detrimental to the survival of newborn neurons. NO was also required for the maintenance of long-term neuroinflammation. Taken together, our data show that NO positively contributes to the initial stages of neurogenesis following seizures but compromises survival of newborn neurons.Foundation for Science and Technology (FCT, Portugal); COMPETE; FEDER [PTDC/SAU-NEU/102612/2008, PTDC/NEU-OSD/0473/2012, PEst-C/SAU/LA0001/2013-2014, PEst-OE/EQB/LA0023/2013-2014]; FCT, Portugal [SFRH/BPD/78901/2011, SFRH/BD/77903/2011

    Inhibition of nitric oxide biosynthesis by anthocyanin fraction of blackberry extract.

    Get PDF
    Anthocyanins are natural colorant belonging to the flavonoid family, widely distributed among flowers, fruits, and vegetables. Some flavonoids have been found to possess anticarcinogenic, cytotoxic, cytostatic, antioxidant, and anti-inflammatory properties. Since increased nitric oxide (NO) plays a role in inflammation, we have investigated whether the pharmacological activity of the anthocyanin fraction of a blackberry extract (cyanidin-3-O-glucoside representing about 88% of the total anthocyanin content) was due to the suppression of NO synthesis. The markedly increased production of nitrites by stimulation of J774 cells with lipopolysaccharide (LPS) for 24 h was concentration-dependently inhibited by the anthocyanin fraction (11, 22, 45, and 90 μg/ml) of the extract. Moreover, this inhibition was dependent on a dual mechanism, since the extract attenuated iNOS protein expression and decreased the iNOS activity in lungs from LPS-stimulated rats. Inhibition of iNOS protein expression appeared to be at the transcriptional level, since the extract and similarly cyanidin-3-O-glucoside (10, 20, 40, and 80 μg/ml, amounts corresponding to the concentrations present in the extract) decreased LPS-induced NF-κB activation, through inhibition of IκBα degradation, and reduced ERK-1/2 phosphorylation in a concentration-dependent manner. In conclusion, our study demonstrates that at least some part of the anti-inflammatory activity of blackberry extract is due to the suppression of NO production by cyanidin-3-O-glucoside, which is the main anthocyanin present in the extract. The mechanism of this inhibition seems to be due to an action on the expression/activity of the enzyme. In particular, the protein expression was inhibited through the attenuation of NF-κB and/or MAPK activatio

    Is there NO treatment for severe sepsis?

    Get PDF
    Sepsis is a systemic inflammatory response syndrome in the presence of suspected or proven infection, and it may progress to or encompass organ failure (severe sepsis) and hypotension (septic shock). Clinicians possess an arsenal of supportive measures to combat severe sepsis and septic shock, and some success, albeit controversial, has been achieved by using low doses of corticosteroids or recombinant human activated protein C. However, a truly effective mediator-directed specific treatment has not been developed yet. Treatment with low doses of corticosteroids or with recombinant human activated protein C remains controversial and its success very limited. Attempts to treat shock by blocking LPS, TNF or IL-1 were unsuccessful, as were attempts to use interferon-gamma or granulocyte colony stimulating factor. Inhibiting nitric oxide synthases held promise but met with considerable difficulties. Scavenging excess nitric oxide or targeting molecules downstream of inducible nitric oxide synthase, such as soluble guanylate cyclase or potassium channels, might offer other alternatives

    The physiological expression of inducible nitric oxide synthase (iNOS) in the human colon

    Get PDF
    Inducible nitric oxide synthase (iNOS) is expressed in the colonic epithelium in both inflammatory bowel disease and colorectal cancer. Nitric oxide (NO), the product of this enzyme, has been implicated in the pathogenesis of both conditions. However, there are conflicting data on whether iNOS is expressed in the normal, uninflamed human colon. To evaluate the expression of iNOS in histologically normal, non-inflamed human colonic mucosa. Reverse transcription polymerase chain reaction (RT-PCR), immunoblotting, and immunohistochemistry were used to investigate the expression of iNOS in 17 histologically normal specimens obtained at colectomy performed for colorectal neoplasia. In addition, 16 endoscopic mucosal biopsies, taken from normal individuals, were also evaluated. Eleven surgical specimens and 16 endoscopic biopsies from patients with refractory ulcerative colitis were used as inflammatory controls. All types of specimens expressed iNOS mRNA. Immunoblotting revealed a protein of approximately 130 kDa consistent with iNOS in mucosal extracts of 77% of normal individuals, and 85% of diseased controls. Immunolabelling localised this protein to the surface epithelium in most of the normal specimens and also to the crypt epithelium and inflammatory cells in the diseased controls. These findings provide evidence that iNOS is often expressed in the surface epithelium of non-inflamed human colon, suggesting that it is induced by local luminal factors, such as bacterial lipopolysaccharide (endotoxin). The resultant NO produced at this site might act as an oxidative barrier, reducing bacterial translocation and providing a means of defence against pathogenic microorganisms

    High Plasma Tnf-? Levels And Mononuclear Cells Inos And Tnf-? Expression AS Risk Factors For Painful Diabetic Neuropathy

    Full text link
    Painful Diabetic Neuropathy (PDN) is one of the most common and annoyingcomplications of diabetes mellitus. The pathogenesis of PDN is complex and still unclear.Recently it has become clear that nitric oxide (NO) and proinflammatory cytokines playan important role in the pathogenesis and maintenance of pain in PDN. Based on thisphenomenon, this study was conducted to investigate whether the cytokine tumornecrosis factor-alpha (TNF-?) and NO, in this case inducible Nitric Oxide Synthase(iNOS), play a role in PDN pathogenesis.The study was carried in two steps. The first step was a cross sectional and thesecond step was a case-control study. The study was performed in 110 type-2 diabeticpatients. The plasma TNF-? levels were determined by ELISA while the expression ofTNF-? and iNOS in mononuclear cells were analyzed immunohistochemically.Of 110 subjects, 59 patients suffered from Painful DN (case) and the remaining51 patients were Painless DN (control). Cross sectionally, plasma TNF-? levels andimmunoreactivity for iNOS and TNF-? were higher in patients with more severe pain inthe Visual Analog Scale (VAS). There were statistically significant differences (p <0.05) between mild and severe pain in regard to TNF-? level (15.24 pg/ml ± 5.42 vs.20.44 pg/ml ± 10.34 ); to iNOS immunoreactivity (9.72 % ± 8.61 vs. 15.6% ± 11.84); andto TNF-? immunoreactivity (13.0 % ± 9. 48 vs. 20.44% ± 11.75).The case control study showed that TNF-? had an odd ratio of 5.053 [CI 95%(2.241-11.392); p < 0.001]. TNF-? immunoreactivity of 4.125 [CI 95% (1.805-9.425); p< 0.001]; and iNOS immunoreactivity of 3.546 [CI 95% (1.613-7.795); p = 0.002]. There were correlations between TNF-? level, TNF-? and iNOS immunoreactivity andVAS with coefficient correlation: 0.330; 0.285 and 0.275 (p < 0.05) respectively.It is concluded that Diabetic Neuropathy patients with high TNF-? levels, iNOSand TNF-? immunoreactivity of mononuclear cells have higher risk for painful DN thanpainless DN. The higher TNF-? level, iNOS and TNF-? immunoreactivity the moresevere was the pain. This supports the hypothesis that TNF-? and iNOS have role inPDN pathogenesis. The results of this research could be applied as a basic for furtherresearch in pursuit of better management of PDN

    Effects of NO synthase inhibitors on the synovial microcirculation in the mouse knee joint

    Get PDF
    Production of nitric oxide by the inducible NO synthase (iNOS) is known to be enhanced in chronic joint inflammation and osteoarthritis as well as aseptic loosening of joint prostheses. Initial studies yielded promising results after inhibition of the nitric oxide synthase (NOS). However, the effect of NOS inhibition has not been studied at the site of the primary function of NO, the microcirculation of the synovium in vivo. Using our recently developed model for the in vivo study of synovial microcirculation in the mouse knee joint, the effects of selective versus nonselective inhibition of iNOS were investigated by means of intravital fluorescence microscopy. After resection of the patella tendon, the synovial fatty tissue was exposed for intravital microscopy. Diameter of arterioles, functional capillary density (FCD), diameter of venules, venular red blood cell velocity and leukocyte-endothelial cell interaction were quantitatively analyzed before, and 10 and 60 min after intravenous injection of NOS inhibitors {[}selective iNOS inhibitor N-iminoethyl-L-lysine (L-NIL), and nonselective NOS inhibitor N-G-nitro-L-arginine methyl ester (L-NAME)]. Our results demonstrate that L-NAME causes a significant decrease in the arteriolar diameter and FCD associated with an increase in the leukocyte accumulation in the synovium in vivo. In contrast, L-NIL neither altered the microhemodynamics nor the leukocyte-endothelial cell interaction in the synovium, indicating its potential use for selective inhibition of iNOS in joint inflammation. Using our method, further studies will provide new insights into the unknown effect of NOS inhibition on the synovial microvasculature in inflammatory joint disease in vivo. Copyright (C) 1999 S. Karger AG, Basel
    corecore