2,420 research outputs found

    Rendering HDR images

    Get PDF
    Color imaging systems are continuously improving, and have now improved to the point of capturing high dynamic range scenes. Unfortunately most commercially available color display devices, such as CRTs and LCDs, are limited in their dynamic range. It is necessary to tone-map, or render, the high dynamic range images in order to display them onto a lower dynamic range device. This paper describes the use of an image appearance model, iCAM, to render high dynamic range images for display. Image appearance models have greater flexibility over dedicated tone-scaling algorithms as they are designed to predict how images perceptually appear, and not designed for the singular purpose of rendering. In this paper we discuss the use of an image appearance framework, and describe specific implementation details for using that framework to render high dynamic range images

    Image appearance modeling

    Get PDF
    Traditional color appearance modeling has recently matured to the point that available, internationally-recommended models such as CIECAM02 are capable of making a wide range of predictions to within the observer variability in color matching and color scaling of stimuli in somewhat simplified viewing conditions. It is proposed that the next significant advances in the field of color appearance modeling will not come from evolutionary revisions of these models. Instead, a more revolutionary approach will be required to make appearance predictions for more complex stimuli in a wider array of viewing conditions. Such an approach can be considered image appearance modeling since it extends the concepts of color appearance modeling to stimuli and viewing environments that are spatially and temporally at the level of complexity of real natural and man-made scenes. This paper reviews the concepts of image appearance modeling, presents iCAM as one example of such a model, and provides a number of examples of the use of iCAM in still and moving image reproduction

    Testing HDR image rendering algorithms

    Get PDF
    Eight high-dynamic-range image rendering algorithms were tested using ten high-dynamic-range pictorial images. A large-scale paired comparison psychophysical experiment was developed containing two sections, comparing the overall rendering performances and grayscale tone mapping performance respectively. An interval scale of preference was created to evaluate the rendering results. The results showed the consistency of tone-mapping performance with the overall rendering results, and illustrated that Durand and Dorsey’s bilateral fast filtering technique and Reinhard’s photographic tone reproduction have the best rendering performance overall. The goal of this experiment was to establish a sound testing and evaluation methodology based on psychophysical experiment results for future research on accuracy of rendering algorithms

    Rendering non-pictorial (Scientific) high dynamic range images

    Get PDF
    In recent years, the graphics community is seeing an increasing demand for the capture and usage of high-dynamic-range (HDR) images. Since the production of HDR imagery is not solely the domain of the visualization of real life or computer generated scenes, novel techniques are also required for imagery captured from non-visual sources such as remote sensing, medical imaging, astronomical imaging, etc. This research proposes to integrate the techniques used for the display of high-dynamic-range pictorial imagery for the practical visualization of non-pictorial (scientific) imagery for data mining and interpretation. Nine algorithms were utilized to overcome the problem associated with rendering the high-dynamic-range image data to low-dynamic-range display devices, and the results were evaluated using a psychophysical experiment. Two paired-comparison experiments and a target detection experiment were performed. Paired-comparison results indicate that the Zone System performs the best on average and the Local Color Correction method performs the worst. The results show that the performance of different encoding schemes depend on the type of data being visualized. The correlation between the preference and scientific usefulness judgments (R2 = 0.31) demonstrates that observers tend to use different criteria when judging the scientific usefulness versus image preference. The experiment was conducted using observers with expertise (Radiologists) for the Medical image to further elucidate the success of HDR rendering on these data. The results indicated that both Radiologists and Non-radiologists tend to use similar criteria regardless of their experience and expertise when judging the usefulness of rendered images. A target detection experiment was conducted to measure the detectability of an embedded noise target in the Medical image to demonstrate the effect of the tone mapping operators on target detection. The result of the target detection experiment illustrated that the detectability of targets the image is greatly influenced by the rendering algorithm due to the inherent differences in tone mapping among the algorithms

    A psychophysical investigation of global illumination algorithms used in augmented reality

    Get PDF
    Global illumination rendering algorithms are capable of producing images that are visually realistic. However, this typically comes at a large computational expense. The overarching goal of this research was to compare different rendering solutions in order to understand why some yield better results when applied to rendering synthetic objects into real photographs. As rendered images are ultimately viewed by human observers, it was logical to use psychophysics to investigate these differences. A psychophysical experiment was conducted judging the composite images for accuracy to the original photograph. In addition, iCAM, an image color appearance model, was used to calculate image differences for the same set of images. In general it was determined that any full global illumination is better than direct illumination solutions only. Also, it was discovered that the full rendering with all of its artifacts is not necessarily an indicator of judged accuracy for the final composite image. Finally, initial results show promise in using iCAM to predict a relationship similar to the psychophysics, which could eventually be used in-the-rendering-loop to achieve photo-realism

    Objective and subjective assessment of perceptual factors in HDR content processing

    Get PDF
    The development of the display and camera technology makes high dynamic range (HDR) image become more and more popular. High dynamic range image give us pleasant image which has more details that makes high dynamic range image has good quality. This paper shows us the some important techniques in HDR images. And it also presents the work the author did. The paper is formed of three parts. The first part is an introduction of HDR image. From this part we can know why HDR image has good quality

    A study on user preference of high dynamic range over low dynamic range video

    Get PDF
    The increased interest in High Dynamic Range (HDR) video over existing Low Dynamic Range (LDR) video during the last decade or so was primarily due to its inherent capability to capture, store and display the full range of real-world lighting visible to the human eye with increased precision. This has led to an inherent assumption that HDR video would be preferable by the end-user over LDR video due to the more immersive and realistic visual experience provided by HDR. This assumption has led to a considerable body of research into efficient capture, processing, storage and display of HDR video. Although, this is beneficial for scientific research and industrial purposes, very little research has been conducted in order to test the veracity of this assumption. In this paper, we conduct two subjective studies by means of a ranking and a rating based experiment where 60 participants in total, 30 in each experiment, were tasked to rank and rate several reference HDR video scenes along with three mapped LDR versions of each scene on an HDR display, in order of their viewing preference. Results suggest that given the option, end-users prefer the HDR representation of the scene over its LDR counterpart
    • …
    corecore