86,028 research outputs found

    Front motion for phase transitions in systems with memory

    Full text link
    We consider the Allen-Cahn equations with memory (a partial integro-differential convolution equation). The prototype kernels are exponentially decreasing functions of time and they reduce the integrodifferential equation to a hyperbolic one, the damped Klein-Gordon equation. By means of a formal asymptotic analysis we show that to the leading order and under suitable assumptions on the kernels, the integro-differential equation behave like a hyperbolic partial differential equation obtained by considering prototype kernels: the evolution of fronts is governed by the extended, damped Born-Infeld equation. We also apply our method to a system of partial integro-differential equations which generalize the classical phase field equations with a non-conserved order parameter and describe the process of phase transitions where memory effects are present

    On the Relation of Delay Equations to First-Order Hyperbolic Partial Differential Equations

    Full text link
    This paper establishes the equivalence between systems described by a single first-order hyperbolic partial differential equation and systems described by integral delay equations. System-theoretic results are provided for both classes of systems (among them converse Lyapunov results). The proposed framework can allow the study of discontinuous solutions for nonlinear systems described by a single first-order hyperbolic partial differential equation under the effect of measurable inputs acting on the boundary and/or on the differential equation. An illustrative example shows that the conversion of a system described by a single first-order hyperbolic partial differential equation to an integral delay system can simplify considerably the solution of the corresponding robust feedback stabilization problem.Comment: 32 pages, submitted for possible publication to ESAIM COC

    An extension of A-stability to alternating direction implicit methods

    Get PDF
    An alternating direction implicit (ADI) scheme was constructed by the method of approximate factorization. An A-stable linear multistep method (LMM) was used to integrate a model two-dimensional hyperbolic-parabolic partial differential equation. Sufficient conditions for the A-stability of the LMM were determined by applying the theory of positive real functions to reduce the stability analysis of the partial differential equations to a simple algebraic test. A linear test equation for partial differential equations is defined and then used to analyze the stability of approximate factorization schemes. An ADI method for the three-dimensional heat equation is also presented

    Forced hyperbolic mean curvature flow

    Full text link
    In this paper, we investigate two hyperbolic flows obtained by adding forcing terms in direction of the position vector to the hyperbolic mean curvature flows in \cite{klw,hdl}. For the first hyperbolic flow, as in \cite{klw}, by using support function, we reduce it to a hyperbolic Monge-Ampeˋ\grave{\rm{e}}re equation successfully, leading to the short-time existence of the flow by the standard theory of hyperbolic partial differential equation. If the initial velocity is non-negative and the coefficient function of the forcing term is non-positive, we also show that there exists a class of initial velocities such that the solution of the flow exists only on a finite time interval [0,Tmax)[0,T_{max}), and the solution converges to a point or shocks and other propagating discontinuities are generated when tTmaxt\rightarrow{T_{max}}. These generalize the corresponding results in \cite{klw}. For the second hyperbolic flow, as in \cite{hdl}, we can prove the system of partial differential equations related to the flow is strictly hyperbolic, which leads to the short-time existence of the smooth solution of the flow, and also the uniqueness. We also derive nonlinear wave equations satisfied by some intrinsic geometric quantities of the evolving hypersurface under this hyperbolic flow. These generalize the corresponding results in \cite{hdl}.Comment: 20 pages. Accepted for publication in Kodai Mathematical Journa

    A result of convergence for a mono-dimensional two-velocities lattice Boltzmann scheme

    Full text link
    We consider a mono-dimensional two-velocities scheme used to approximate the solutions of a scalar hyperbolic conservative partial differential equation. We prove the convergence of the discrete solution toward the unique entropy solution by first estimating the supremum norm and the total variation of the discrete solution, and second by constructing a discrete kinetic entropy-entropy flux pair being given a continuous entropy-entropy flux pair of the hyperbolic system. We finally illustrate our results with numerical simulations of the advection equation and the Burgers equation

    On an age and spatially structured population model for Proteus Mirabilis swarm-colony development

    Full text link
    Proteus mirabilis are bacteria that make strikingly regular spatial-temporal patterns on agar surfaces. In this paper we investigate a mathematical model that has been shown to display these structures when solved numerically. The model consists of an ordinary differential equation coupled with a partial differential equation involving a first-order hyperbolic aging term together with nonlinear degenerate diffusion. The system is shown to admit global weak solutions
    corecore