155,904 research outputs found
Investigation of the applicability of using the triple redundant hydrogen sensor for methane sensing
Application specifications for the methane sensor were assembled and design guidelines, development goals and evaluation criteria were formulated. This was done to provide a framework to evaluate sensor performance and any design adjustments to the preprototype sensor that could be required to provide methane sensitivity. Good response to hydrogen was experimentally established for four hydrogen sensor elements to be later evaluated for methane response. Prior results were assembled and analyzed for other prototype hydrogen sensor performance parameters to form a comparison base. The four sensor elements previously shown to have good hydrogen response were experimentally evaluated for methane response in 2.5% methane-in-air. No response was obtained for any of the elements, despite the high methane concentration used (50% of the Lower Flammability Limit). It was concluded that the preprototype sensing elements were insensitive to methane and were hydrogen specific. Alternative sensor operating conditions and hardware design changes were considered to provide methane sensitivity to the preprototype sensor, including a variety of different methane sensing techniques. Minor changes to the existing sensor elements, sensor geometry and operating conditions will not make the preprototype hydrogen sensor respond to methane. New sensor elements that will provide methane and hydrogen sensitivity require replacement of the existing thermistor type elements. Some hydrogen sensing characteristics of the modified sensor will be compromised (larger in situ calibration gas volume and H2 nonspecificity). The preprototype hydrogen sensor should be retained for hydrogen monitoring and a separate methane sensor should be developed
Fluidic hydrogen detector production prototype development
A hydrogen gas sensor that can replace catalytic combustion sensors used to detect leaks in the liquid hydrogen transfer systems at Kennedy Space Center was developed. A fluidic sensor concept, based on the principle that the frequency of a fluidic oscillator is proportional to the square root of the molecular weight of its operating fluid, was utilized. To minimize sensitivity to pressure and temperature fluctuations, and to make the sensor specific for hydrogen, two oscillators are used. One oscillator operates on sample gas containing hydrogen, while the other operates on sample gas with the hydrogen converted to steam. The conversion is accomplished with a small catalytic converter. The frequency difference is taken, and the hydrogen concentration computed with a simple digital processing circuit. The output from the sensor is an analog signal proportional to hydrogen content. The sensor is shown to be accurate and insensitive to severe environmental disturbances. It is also specific for hydrogen, even with large helium concentrations in the sample gas
Method of maintaining activity of hydrogen-sensing platinum electrode
Three-electrode hydrogen sensor containing a platinum electrode maintained in a highly catalytic state, operates with a minimal response time and maximal sensitivity to the hydrogen gas being sensed. Electronic control and readout circuitry reactivates the working electrode of the sensor to a state of maximal catalytic activity
Triple redundant hydrogen sensor with in situ calibration
To meet sensing and calibration needs, an in situ calibration technique was developed. It is based on electrolytic generation of a hydrogen/air atmosphere within a hydrogen sensor. The hydrogen is generated from water vapor in the air, and being electrical in nature, the in situ calibration can be performed completely automatically in remote locations. Triply redundant sensor elements are integrated within a single, compact housing, and digital logic provides inter-sensor comparisons to warn of and identify malfunctioning sensor elements. An evaluation of this concept is presented
An optical fiber hydrogen sensor using a palladium-coated ball lens
A self-referenced optical fiber refractometer using a ball lens as a sensor head has been developed and characterized. A 350-μm ball lens created at the tip of a single mode fiber has been coated with a 40-nm optically thin layer of palladium that reacts with hydrogen to form a hydride, which has a lower reflectivity than pure palladium. Optical reflectance measurements from the tip of the ball lens were performed to determine the hydrogen response. The change in reflectivity is proportional to the hydrogen concentration in the range 0% to 1% hydrogen in air with a detection limit down to 10 ppm (1σ) in air. This technique offers a simple sensor head arrangement, with a larger sampling area (~40 times) than a typical single-mode fiber core. A statistical image analysis of a palladium film, with cracks created by accelerated failure, confirms that the anticipated sensor area for a ball lens sensor head has a more predictable reflectivity than that of a bare fiber core
Sniffer used as portable hydrogen leak detector
Sniffer type portable monitor detects hydrogen in air, oxygen, nitrogen, or helium. It indicates the presence of hydrogen in contact with activated palladium black by a change in color of a thermochromic paint, and indicates the quantity of hydrogen by a sensor probe and continuous readout
Predictive sensor method and apparatus
A microprocessor and electronics package employing predictive methodology was developed to accelerate the response time of slowly responding hydrogen sensors. The system developed improved sensor response time from approximately 90 seconds to 8.5 seconds. The microprocessor works in real-time providing accurate hydrogen concentration corrected for fluctuations in sensor output resulting from changes in atmospheric pressure and temperature. Following the successful development of the hydrogen sensor system, the system and predictive methodology was adapted to a commercial medical thermometer probe. Results of the experiment indicate that, with some customization of hardware and software, response time improvements are possible for medical thermometers as well as other slowly responding sensors
Testing of hydrogen sensor based on organic materials
Práce je zaměřena na problematiku bezpečnostních vodíkových senzorů. Základní principy a teorie vodíkových senzorů je rozebrána v první části práce. Je navržena metodologie testování organických vodíkových senzorů vyvinutých a vyrobených na Fakultě Chemické Vysokého Učení Technického v Brně. Nejslibnější organický material byl testován. V závěrečné části byl navržen teplotní regulátor pro použití s keramickou senzorovou platformou.This thesis is focused on topic of safety hydrogen sensors. Theory of hydrogen sensors and main sensor principles are discussed. Methodology for testing of organic hydrogen sensors developed and fabricated at the Faculty of Chemistry of Brno University of Technology is outlined. A set of tests is done for the most promising organic material. Also, temperature regulator for ceramic sensor platform is designed.
Sensitive gaseous hydrogen detection system
System utilizing new type hydrogen sensor has overall detection sensitivity and response speed higher than conventional hot-wire or hot-thermistor detectors. System measures concentrations of from 2 parts per million to 30 percent and is adaptable as leak detector and hazard alarm wherever hydrogen is used
- …