105,394 research outputs found

    Serological profiles in nursery piglets colonized with Staphylococcus aureus

    Get PDF
    At present, the immune response of pigs in relation to Staphylococcus aureus carriage is poorly understood. This study aimed at investigating the dynamics of the anti-staphylococcal humoral immune response in methicillin-susceptible S. aureus (MSSA)-positive piglets and at assessing the effect of the experimental introduction of a methicillin-resistant S. aureus (MRSA) Sequence Type (ST) 398 strain. Therefore, serum samples were collected at different times from 31 weaned piglets originating from four different sows. Twenty-four out of the 31 piglets were challenged with MRSA ST398. The serum samples were analysed for IgG antibodies to 39 S. aureus antigens, using a multiplex bead-based assay (xMAP technology, Luminex Corporation). Though antibody responses showed broad inter-individual variability, serological results appeared to be clustered by litter of origin. For most antigens, an age-related response was observed with an apparent increase in antibody titres directed against staphylococcal microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), which have been shown to play a role in S. aureus colonization. In most animals, antibody titres directed against staphylococcal toxins or immune-modulating proteins decreased with age, possibly reflecting absence of bacterial invasion. The introduction of MRSA ST398 did not elicit a significant humoral immune reaction. This study describes, for the first time, the humoral immune response in weaned pigs colonized with S. aureus

    Effect of industrial product IMBO® on immunosuppressed broilers vaccinated with Newcastle disease vaccine

    Get PDF
    The effect of IMBO was investigated on humoral immune response to Newcastle disease vaccines in broiler chickens. Haemagglutination inhibition test and enzyme-linked immunosorbent assay were used to assess the immune response. Results showed that although IMBO significantly enhanced humoral immune response to live Newcastle disease vaccine, it did not decrease post virulent NDV challenge mortality

    Immune Response of Molluscs

    Get PDF
    In common with other invertebrates, molluscs are known to have internal immune response against foreign particles and organisms. The innate immunity of molluscs reflects the inherent non-specific response that provides the first line of defense. Anatomic barriers, phagocytic cells, and physiological components are the main elements of the innate immune response in molluscs. It is composed of both cellular and humoral elements. The cellular components are the circulating hemocytes. Small invaders are eliminated by the phagocytic hemocytes, while large invaders are eliminated by encapsulation. The ingested foreign particles are then hemolyzed by the action of certain toxic enzymes that catalyze oxidative burst reactions capable of killing pathogens and foreign invaders. Humoral components of molluscan immunity involve nitric oxide, lysozyme activity, lectins, and the phenyloxidase system. The current chapter sheds light on the elements of the molluscan innate immune system and presents a case study of the immune response of Lymnaea stagnalis mollusc against Chaetogaster limnaei parasite. The effect of the parasite on some humoral immune response parameters such as nitric oxide, phenol oxidase, and lysozyme production was investigated. In conclusion, the snail Lymnaea stagnalis exerts humoral immune response against Chaetogaster limnaei parasite. However, this response is insufficient to eliminate the parasite

    Cationic Liposomes Formulated with Synthetic Mycobacterial Cordfactor (CAF01): A Versatile Adjuvant for Vaccines with Different Immunological Requirements

    Get PDF
    It is now emerging that for vaccines against a range of diseases including influenza, malaria and HIV, the induction of a humoral response is insufficient and a substantial complementary cell-mediated immune response is necessary for adequate protection. Furthermore, for some diseases such as tuberculosis, a cellular response seems to be the sole effector mechanism required for protection. The development of new adjuvants capable of inducing highly complex immune responses with strong antigen-specific T-cell responses in addition to antibodies is therefore urgently needed. (cell-mediated/humoral) and malaria (humoral) immunization with CAF01-based vaccines elicited significant protective immunity against challenge.CAF01 is potentially a suitable adjuvant for a wide range of diseases including targets requiring both CMI and humoral immune responses for protection

    Autoantibodies Produced at the Site of Tissue Damage Provide Evidence of Humoral Autoimmunity in Inclusion Body Myositis

    Get PDF
    Inclusion body myositis (IBM) belongs to a group of muscle diseases known as the inflammatory myopathies. The presence of antibody-secreting plasma cells in IBM muscle implicates the humoral immune response in this disease. However, whether the humoral immune response actively contributes to IBM pathology has not been established. We sought to investigate whether the humoral immune response in IBM both in the periphery and at the site of tissue damage was directed towards self-antigens. Peripheral autoantibodies present in IBM serum but not control serum recognized self-antigens in both muscle tissue and human-derived cell lines. To study the humoral immune response at the site of tissue damage in IBM patients, we isolated single plasma cells directly from IBM-derived muscle tissue sections and from these cells, reconstructed a series of recombinant immunoglobulins (rIgG). These rIgG, each representing a single muscle-associated plasma cell, were examined for reactivity to self-antigens. Both, flow cytometry and immunoblotting revealed that these rIgG recognized antigens expressed by cell lines and in muscle tissue homogenates. Using a mass spectrometry-based approach, Desmin, a major intermediate filament protein, expressed abundantly in muscle tissue, was identified as the target of one IBM muscle-derived rIgG. Collectively, these data support the view that IBM includes a humoral immune response in both the periphery and at the site of tissue damage that is directed towards self-antigens

    Humoral response to mRNA vaccines against SARS-CoV-2 in patients with humoral immunodeficiency disease.

    Get PDF
    OBJECTIVES Although mRNA-based vaccines against SARS-CoV-2 induce a robust immune response and prevent infections and hospitalizations, there are limited data on the antibody response in individuals with humoral immunodeficiency. The aim of this study was to evaluate the humoral immune response after two vaccine doses with BNT162b2 or mRNA-1273 in patients with humoral immunodeficiency disease. METHODS This cross-sectional study assessed 39 individuals with hypogammaglobulinemia under immunoglobulin replacement therapy. IgG anti-SARS-CoV-2 spike protein antibodies (anti-S) were measured 4 weeks to 4 months after two doses of an mRNA vaccine against SARS-CoV-2. The proportion of patients, who developed a humoral immune response to the spike protein were evaluated and compared to 19 healthy controls. RESULTS After vaccination with two vaccine doses, 26/39 patients (66.7%) with humoral immunodeficiency disease and all healthy controls developed anti-S. In subjects with baseline IgG 5 g/l: 151.5 AU/ml (95%CI 109.0-400.0), healthy controls 250.0 AU/ml (95%CI 209.0-358.0), p = 0.007. CONCLUSION In most patients with mild to moderate humoral immunodeficiency we found only slightly lower anti-S antibodies compared with healthy controls after two vaccine doses with BNT162b2 and mRNA-1273. However, in patients with a decreased baseline IgG below 3 g/l and/or under immunosuppressive drugs, we found severely impaired humoral immune responses

    Evaluating contribution of the cellular and humoral immune responses to the control of shedding of \u3cem\u3eMycobacterium avium\u3c/em\u3e spp. \u3cem\u3eparatuberculosis\u3c/em\u3e in cattle

    Get PDF
    Mycobacterium avium spp. paratuberculosis (MAP) causes a persistent infection and chronic inflammation of the gut in ruminants leading to bacterial shedding in feces in many infected animals. Although there are often strong MAP-specific immune responses in infected animals, immunological correlates of protection against progression to disease remain poorly defined. Analysis of cross-sectional data has suggested that the cellular immune response observed early in infection is effective at containing bacterial growth and shedding, in contrast to humoral immune responses. In this study, 20 MAP-infected calves were followed for nearly 5 years during which MAP shedding, antigen-specific cellular (LPT) and humoral (ELISA) immune responses were measured. We found that MAP-specific cellular immune response developed slowly, with the peak of the immune response occurring one year post infection. MAP-specific humoral immunity expanded only in a subset of animals. Only in a subset of animals there was a statistically significant negative correlation between the amount of MAP shedding and magnitude of the MAP-specific cellular immune response. Direct fitting of simple mechanistic mathematical models to the shedding data suggested that MAP-specific immune responses contributed significantly to the kinetics of MAP shedding in most animals. However, whereas the MAP-specific cellular immune response was predicted to suppress shedding in some animals, in other animals it was predicted to increase shedding. In contrast, MAP-specific humoral response was always predicted to increase shedding. Our results illustrate the use of mathematical methods to understand relationships between mycobacteria and immunity in vivo but also highlight problems with establishing cause-effect links from observational data

    EFFECT OF IMMUNOSUPPRESSION ON CHRONIC LCM VIRUS INFECTION OF MICE

    Get PDF
    C3H mice chronically infected with LCM virus were found to be lethally affected by small doses of immunosuppression which caused bone marrow aplasia but had no effect on the amount of virus carried by the mouse. Humoral immune response of SWR/J mice to acute LCM infection was found to be totally suppressed by repeated single doses of 300 R/wk with no alteration in the level of virus carried by the mouse. In contrast, the established anti-LCM humoral immune response encountered in mice chronically infected with LCM virus was not suppressed by the same irradiation procedure. Over half of the chronic LCM carrier SWR/J mice treated with cyclophosphamide for 6 mo had total anti-LCM humoral immunosuppression, but showed no change in the level of virus carried. The glomerulonephritis which occurs in chronic LCM carrier mice was prevented by cyclophosphamide treatment in 90% of the mice. The humoral immune response which occurs in chronic LCM carrier mice appears to play no role in controlling the amount of virus carried by the mouse. Suppression of the LCM immune response by cyclophosphamide does prevent the development of glomerulonephritis in these mice

    Humoral Immune Response in Tuberculous Pleuritis

    Get PDF
    Tuberculous pleuritis is a good human model to understand the local and protective immune response against tuberculosis, due to the self-limitedness of the disease. Although the cellular immune response has been well characterised in tuberculous pleurisy, much less is known about the humoral immune response operating at the site of infection. To understand the humoral immune response, B cells were enumerated in peripheral blood mononuclear cells (PBMC) and pleural fluid mononuclear cells (PFMC) of tuberculous (TP) and non-tuberculous pleuritis patients (NTP). The levels of IgG, IgA and IgM antibodies for PPD, culture filtrate (CF) and sonicate antigens (Son Ag) were assessed in plasma (BL) and pleural fluid (PF) and a western blot was carried out with the CF antigen. The percentage of CD19+B-cells was similar in PBMC and PFMC of TP patients but was significantly lower in PFMCs of NTP patients. The IgG levels for PPD and CF antigens were higher in PF of TP than NTP patients. The antigen recognition patterns did not differ in plasma and pleural fluid of the same patient in both groups pointing out the passive diffusion of the plasma to the pleura. The antigens 25, 31, 33, 70, 110, 124 and 132 kDa were recognized exclusively by the TP patients. Thus our study showed that the local humoral response in TP did not differ from the systemic response. However, the humoral response differed in TP patients when compared to NTP patients
    • …
    corecore