1,584,860 research outputs found

    Faith in the Algorithm, Part 1: Beyond the Turing Test

    Get PDF
    Since the Turing test was first proposed by Alan Turing in 1950, the primary goal of artificial intelligence has been predicated on the ability for computers to imitate human behavior. However, the majority of uses for the computer can be said to fall outside the domain of human abilities and it is exactly outside of this domain where computers have demonstrated their greatest contribution to intelligence. Another goal for artificial intelligence is one that is not predicated on human mimicry, but instead, on human amplification. This article surveys various systems that contribute to the advancement of human and social intelligence

    The Simulation of Human Intelligence

    Get PDF
    Nowadays, we are extensively feed up with technology of information all around us. Everything we have seen around us is purely a product of high end advancement. The arrival of computers made the importance of information technology rapidly spreading around where everyone has observed its unveiling growth. It’s an industry which gathers the procedure of computer hardware, software and networking. Information technology turns as an aide. A standard process that allows great bulks of data to be kept and processed or transmitted at lightning speed. Now, there is more information at hand to make choices, sustain and preserve relations, monitor business activities or track movements. By this, information can be received and acquired at any moment

    A Formal Measure of Machine Intelligence

    Full text link
    A fundamental problem in artificial intelligence is that nobody really knows what intelligence is. The problem is especially acute when we need to consider artificial systems which are significantly different to humans. In this paper we approach this problem in the following way: We take a number of well known informal definitions of human intelligence that have been given by experts, and extract their essential features. These are then mathematically formalised to produce a general measure of intelligence for arbitrary machines. We believe that this measure formally captures the concept of machine intelligence in the broadest reasonable sense.Comment: 8 two-column page

    Learning, Social Intelligence and the Turing Test - why an "out-of-the-box" Turing Machine will not pass the Turing Test

    Get PDF
    The Turing Test (TT) checks for human intelligence, rather than any putative general intelligence. It involves repeated interaction requiring learning in the form of adaption to the human conversation partner. It is a macro-level post-hoc test in contrast to the definition of a Turing Machine (TM), which is a prior micro-level definition. This raises the question of whether learning is just another computational process, i.e. can be implemented as a TM. Here we argue that learning or adaption is fundamentally different from computation, though it does involve processes that can be seen as computations. To illustrate this difference we compare (a) designing a TM and (b) learning a TM, defining them for the purpose of the argument. We show that there is a well-defined sequence of problems which are not effectively designable but are learnable, in the form of the bounded halting problem. Some characteristics of human intelligence are reviewed including it's: interactive nature, learning abilities, imitative tendencies, linguistic ability and context-dependency. A story that explains some of these is the Social Intelligence Hypothesis. If this is broadly correct, this points to the necessity of a considerable period of acculturation (social learning in context) if an artificial intelligence is to pass the TT. Whilst it is always possible to 'compile' the results of learning into a TM, this would not be a designed TM and would not be able to continually adapt (pass future TTs). We conclude three things, namely that: a purely "designed" TM will never pass the TT; that there is no such thing as a general intelligence since it necessary involves learning; and that learning/adaption and computation should be clearly distinguished.Comment: 10 pages, invited talk at Turing Centenary Conference CiE 2012, special session on "The Turing Test and Thinking Machines
    corecore